Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany; Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
Biophys J. 2023 May 16;122(10):1807-1821. doi: 10.1016/j.bpj.2023.04.013. Epub 2023 Apr 18.
The ability to sense transmembrane voltage underlies most physiological roles of voltage-gated sodium (Nav) channels. Whereas the key role of their voltage-sensing domains (VSDs) in channel activation is well established, the molecular underpinnings of voltage coupling remain incompletely understood. Voltage-dependent energetics of the activation process can be described in terms of the gating charge that is defined by coupling of charged residues to the external electric field. The shape of the electric field within VSDs is therefore crucial for the activation of voltage-gated ion channels. Here, we employed molecular dynamics simulations of cardiac Nav1.5 and bacterial NavAb, together with our recently developed tool g_elpot, to gain insights into the voltage-sensing mechanisms of Nav channels via high-resolution quantification of VSD electrostatics. In contrast to earlier low-resolution studies, we found that the electric field within VSDs of Nav channels has a complex isoform- and domain-specific shape, which prominently depends on the activation state of a VSD. Different VSDs vary not only in the length of the region where the electric field is focused but also differ in their overall electrostatics, with possible implications in the diverse ion selectivity of their gating pores. Due to state-dependent field reshaping, not only translocated basic but also relatively immobile acidic residues contribute significantly to the gating charge. In the case of NavAb, we found that the transition between structurally resolved activated and resting states results in a gating charge of 8e, which is noticeably lower than experimental estimates. Based on the analysis of VSD electrostatics in the two activation states, we propose that the VSD likely adopts a deeper resting state upon hyperpolarization. In conclusion, our results provide an atomic-level description of the gating charge, demonstrate diversity in VSD electrostatics, and reveal the importance of electric-field reshaping for voltage sensing in Nav channels.
跨膜电压的感知能力是电压门控钠离子(Nav)通道发挥大多数生理作用的基础。尽管其电压传感结构域(VSD)在通道激活中的关键作用已得到充分证实,但电压偶联的分子基础仍不完全清楚。可以根据耦合带电残基与外部电场的门控电荷来描述激活过程的电压依赖性能量学。因此,VSD 内电场的形状对于电压门控离子通道的激活至关重要。在这里,我们通过使用 Nav1.5 心脏通道和细菌 NavAb 的分子动力学模拟以及我们最近开发的工具 g_elpot,通过高分辨率量化 VSD 静电学来深入了解 Nav 通道的电压传感机制。与早期的低分辨率研究相反,我们发现 Nav 通道 VSD 内的电场具有复杂的亚型和结构域特异性形状,这主要取决于 VSD 的激活状态。不同的 VSD 不仅在电场聚焦的区域长度上有所不同,而且在整体静电学上也有所不同,这可能对其门控孔的不同离子选择性产生影响。由于状态依赖性的场重塑,不仅易位的碱性残基,而且相对固定的酸性残基对门控电荷的贡献也很大。在 NavAb 的情况下,我们发现从结构上解析的激活状态到静止状态的转变导致 8e 的门控电荷,这明显低于实验估计值。基于对两种激活状态下 VSD 静电学的分析,我们提出 VSD 在超极化时可能会采用更深的静止状态。总之,我们的结果提供了门控电荷的原子水平描述,展示了 VSD 静电学的多样性,并揭示了电场重塑对 Nav 通道电压传感的重要性。