Suppr超能文献

电压门控离子通道中的 ω 电流:从使用 MD 模拟揭示电压感应机制中学到了什么?

Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?

机构信息

Université de Lorraine, Equipe Théorie-Modélisation-Simulations, SRSMC, UMR 7565, Vandoeuvre les Nancy, France, and CNRS, Equipe Théorie-Modélisation-Simulations, UMR 7565, Vandoeuvre les Nancy, France.

出版信息

Acc Chem Res. 2013 Dec 17;46(12):2755-62. doi: 10.1021/ar300290u. Epub 2013 May 22.

Abstract

Ion channels conduct charged species through otherwise impermeable biological membranes. Their activity supports a number of physiological processes, and genetic mutations can disrupt their function dramatically. Among these channels, voltage gated cation channels (VGCCs) are ubiquitous transmembrane proteins involved in electrical signaling. In addition to their selectivity for ions, their function requires membrane-polarization-dependent gating. Triggered by changes in the transmembrane voltage, the activation and deactivation of VGCCs proceed through a sensing mechanism that prompts motion of conserved positively charged (basic) residues within the S4 helix of a four-helix bundle, the voltage sensor domain (VSD). Decades of experimental investigations, using electrophysiology, molecular biology, pharmacology, and spectroscopy, have revealed details about the function of VGCCs. However, in 2005, the resolution of the crystal structure of the activated state of one member of the mammalian voltage gated potassium (Kv) channels family (the Kv1.2) enabled researchers to make significant progress in understanding the structure-function relationship in these proteins on a molecular level. In this Account, we review the use of a complementary technique, molecular dynamics (MD) simulations, that has offered new insights on this timely issue. Starting from the "open-activated state" crystal structure, we have carried out large-scale all atom MD simulations of the Kv1.2 channel embedded in its lipidic environment and submitted to a hyperpolarizing (negative) transmembrane potential. We then used steered MD simulations to complete the full transition to the resting-closed state. Using these procedures, we have followed the operation of the VSDs and uncovered three intermediate states between their activated and deactivated conformations. Each conformational state is characterized by its network of salt bridges and by the occupation of the gating charge transfer center by a specific S4 basic residue. Overall, the global deactivation mechanism that we have uncovered agrees with proposed kinetic models and recent experimental results that point towards the presence of several intermediate states. The understanding of these conformations has allowed us to examine how mutations of the S4 basic residues analogous to those involved in genetic diseases affect the function of VGCCs. In agreement with electrophysiology experiments, mutations perturb the VSD structure and trigger the appearance of state-dependent "leak" currents. The simulation results unveil the key elementary molecular processes involved in these so-called "omega" currents. We generalize these observations to other members of the VGCC family, indicating which type of residues may generate such currents and which conditions might cause leaks that prevent proper function of the channel. Today, the understanding of the intermediate state conformations enables researchers to confidently tackle other key questions such as the mode of action of toxins or modulation of channel function by lipids.

摘要

离子通道通过原本不可渗透的生物膜传导带电物质。它们的活动支持许多生理过程,而基因突变会极大地破坏它们的功能。在这些通道中,电压门控阳离子通道(VGCC)是一种普遍存在的跨膜蛋白,参与电信号传递。除了对离子的选择性外,它们的功能还需要依赖膜极化的门控。VGCC 的激活和失活是通过一种感应机制触发的,该机制促使位于四螺旋束电压传感器域(VSD)中的 S4 螺旋内保守的带正电荷(碱性)残基运动。几十年来,使用电生理学、分子生物学、药理学和光谱学的实验研究揭示了有关 VGCC 功能的详细信息。然而,在 2005 年,一种哺乳动物电压门控钾(Kv)通道家族成员(Kv1.2)的激活状态的晶体结构分辨率使研究人员能够在分子水平上在这些蛋白质的结构-功能关系方面取得重大进展。在本综述中,我们回顾了使用互补技术——分子动力学(MD)模拟——在这个及时问题上提供新见解的情况。从“开放激活状态”晶体结构开始,我们对嵌入其脂质环境并施加超极化(负)跨膜电位的 Kv1.2 通道进行了大规模全原子 MD 模拟。然后,我们使用定向 MD 模拟完成了从激活状态到静息关闭状态的完全转变。使用这些程序,我们跟踪了 VSD 的操作,并发现了它们在激活和失活构象之间的三个中间状态。每个构象状态的特征是其盐桥网络以及特定 S4 碱性残基占据门控电荷转移中心。总的来说,我们发现的全局失活机制与提出的动力学模型和最近指向存在多个中间状态的实验结果一致。对这些构象的理解使我们能够检查类似于遗传疾病中涉及的那些 S4 碱性残基的突变如何影响 VGCC 的功能。与电生理学实验一致,突变会破坏 VSD 结构并引发状态依赖性“泄漏”电流的出现。模拟结果揭示了涉及这些所谓的“ω”电流的关键基本分子过程。我们将这些观察结果推广到 VGCC 家族的其他成员,指出哪种类型的残基可能产生这种电流,以及哪种条件可能导致泄漏,从而阻止通道的正常功能。如今,对中间状态构象的理解使研究人员能够自信地解决其他关键问题,例如毒素的作用模式或脂质对通道功能的调节。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验