Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Oeiras, Portugal.
Angew Chem Int Ed Engl. 2023 Jun 26;62(26):e202218782. doi: 10.1002/anie.202218782. Epub 2023 May 12.
The electrolysis of dilute CO streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. A carbonic anhydrase accelerates CO hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO cleanly to formate; down to even atmospheric concentrations of CO . This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO streams to chemicals by using all forms of dissolved carbon.
从低浓度源进行直接电催化 CO 还原,我们引入了一种策略,通过在多孔电极中利用具有纳米限域酶的微隔室来模拟蓝细菌中的羧基体。碳酸酐酶通过使所有溶解的碳都可用于利用来加速 CO 水合动力学并最小化底物消耗,而高效的甲酸脱氢酶将 CO 清洁地还原为甲酸;即使是大气浓度的 CO 也可以。这个受生物启发的概念表明,羧基体通过利用所有形式的溶解碳,为将低浓度 CO 流还原为化学物质提供了可行的蓝图。