Suppr超能文献

通过速率决定步骤调控将低浓度一氧化碳直接电还原为多碳产物。

Direct low concentration CO electroreduction to multicarbon products via rate-determining step tuning.

作者信息

Xie Liangyiqun, Cai Yanming, Jiang Yujing, Shen Meikun, Lam Jason Chun-Ho, Zhu Jun-Jie, Zhu Wenlei

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, 97403, USA.

出版信息

Nat Commun. 2024 Nov 29;15(1):10386. doi: 10.1038/s41467-024-54590-7.

Abstract

Direct converting low concentration CO in industrial exhaust gases to high-value multi-carbon products via renewable-energy-powered electrochemical catalysis provides a sustainable strategy for CO utilization with minimized CO separation and purification capital and energy cost. Nonetheless, the electrocatalytic conversion of dilute CO into value-added chemicals (C products, e.g., ethylene) is frequently impeded by low CO conversion rate and weak carbon intermediates' surface adsorption strength. Here, we fabricate a range of Cu catalysts comprising fine-tuned Cu(111)/CuO(111) interface boundary density crystal structures aimed at optimizing rate-determining step and decreasing the thermodynamic barriers of intermediates' adsorption. Utilizing interface boundary engineering, we attain a Faradaic efficiency of (51.9 ± 2.8) % and a partial current density of (34.5 ± 6.4) mA·cm for C products at a dilute CO feed condition (5% CO v/v), comparing to the state-of-art low concentration CO electrolysis. In contrast to the prevailing belief that the CO activation step ( ) governs the reaction rate, we discover that, under dilute CO feed conditions, the rate-determining step shifts to the generation of *COOH ( ) at the Cu/Cu interface boundary, resulting in a better C production performance.

摘要

通过可再生能源驱动的电化学催化将工业废气中的低浓度一氧化碳直接转化为高价值的多碳产物,为一氧化碳的利用提供了一种可持续策略,可将一氧化碳分离和纯化的资本与能源成本降至最低。尽管如此,将稀一氧化碳电催化转化为增值化学品(含碳产物,如乙烯)常常受到一氧化碳转化率低和碳中间体表面吸附强度弱的阻碍。在此,我们制备了一系列具有微调的Cu(111)/CuO(111)界面边界密度晶体结构的铜催化剂,旨在优化速率决定步骤并降低中间体吸附的热力学势垒。利用界面边界工程,在稀一氧化碳进料条件(5% CO v/v)下,与最先进的低浓度一氧化碳电解相比,我们实现了含碳产物的法拉第效率为(51.9 ± 2.8)%,部分电流密度为(34.5 ± 6.4) mA·cm 。与普遍认为的一氧化碳活化步骤( )决定反应速率不同,我们发现,在稀一氧化碳进料条件下,速率决定步骤转移到了Cu/Cu界面边界处*COOH( )的生成,从而带来了更好的含碳产物生成性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e658/11607466/7c4185942b3b/41467_2024_54590_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验