Suppr超能文献

基于身高、冠径和面型测量预测上颌恒第一磨牙的根管长度和牙髓容积。

Prediction of root canal lengths and pulp volume of the maxillary permanent first molar based on stature, crown diameters, and facial morphometry.

机构信息

Niğde Ömer Halisdemir University, Department of Endodontics, Niğde, Turkey.

İstanbul Medeniyet University, Department of Endodontics, İstanbul, Turkey.

出版信息

Anat Sci Int. 2023 Jul;98(3):454-462. doi: 10.1007/s12565-023-00727-5. Epub 2023 Apr 20.

Abstract

This study purposed to develop statistical models to predict palatal (PRL), mesial (MRL), and distal (DRL) root canal length and pulp volume (PV) of the maxillary first permanent molar using stature, gender, mesiodistal (MD), and buccopalatal (BP) crown diameters and some facial morphometries. 57 individuals were included in the study. Cone beam computed tomography was used to measure root canal lengths and PV. The PV calculation was carried out using the software ITK-SNAP 3.4.0. PRL was positively correlated with BP, stature, middle facial height, interalar distance, and bicommissural distance (BCD) (p < 0.05). DRL was positively correlated with BP, MD, and stature (p < 0.05). MRL was positively correlated with BP, MD, stature, lower face height, bizygomatic distance, and BCD (p < 0.05). PV was negatively correlated with age and BCD (p < 0.05). Although all models have significant predictive power for the root lengths and PV, no model could explain variances greater than 30%. The highest and lowest predictive ability was obtained for PRL and DRL, respectively. While the most significant predictor was BP for PRL and DRL, it was the age for PV.

摘要

本研究旨在建立统计学模型,通过身高、性别、近远中径(MD)、颊舌径(BP)和一些面型特征来预测上颌第一恒磨牙的腭(PRL)、近中(MRL)和远中(DRL)根管长度和牙髓腔容积(PV)。本研究纳入了 57 名个体。使用锥形束 CT 测量根管长度和 PV。使用 ITK-SNAP 3.4.0 软件进行 PV 计算。PRL 与 BP、身高、中面部高度、两眼间距离和两口角间距离(BCD)呈正相关(p<0.05)。DRL 与 BP、MD 和身高呈正相关(p<0.05)。MRL 与 BP、MD、身高、下面高、面宽、BCD 呈正相关(p<0.05)。PV 与年龄和 BCD 呈负相关(p<0.05)。尽管所有模型对根长和 PV 均具有显著的预测能力,但没有一个模型可以解释超过 30%的方差。PRL 和 DRL 的预测能力最高和最低。对于 PRL 和 DRL,最显著的预测因子是 BP,而对于 PV,最显著的预测因子是年龄。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验