Suppr超能文献

基于神经网络模型的真实世界环境下中轴型脊柱关节炎患者放射学进展的定量预测。

Quantitative prediction of radiographic progression in patients with axial spondyloarthritis using neural network model in a real-world setting.

机构信息

Division of Rheumatology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea.

Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-Daero, Paldal-Gu, Suwon, Gyeonggi-Do, 16247, Republic of Korea.

出版信息

Arthritis Res Ther. 2023 Apr 20;25(1):65. doi: 10.1186/s13075-023-03050-6.

Abstract

BACKGROUND

Predicting radiographic progression in axial spondyloarthritis (axSpA) remains limited because of the complex interaction between multiple associated factors and individual variability in real-world settings. Hence, we tested the feasibility of artificial neural network (ANN) models to predict radiographic progression in axSpA.

METHODS

In total, 555 patients with axSpA were split into training and testing datasets at a 3:1 ratio. A generalized linear model (GLM) and ANN models were fitted based on the baseline clinical characteristics and treatment-dependent variables for the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) of the radiographs at follow-up time points. The mSASSS prediction was evaluated, and explainable machine learning methods were used to provide insights into the model outcome or prediction.

RESULTS

The R values of the fitted models were in the range of 0.90-0.95 and ANN with an input of mSASSS as the number of each score performed better (root mean squared error (RMSE) = 2.83) than GLM or input of mSASSS as a total score (RMSE = 2.99-3.57). The ANN also effectively captured complex interactions among variables and their contributions to the transition of mSASSS over time in the fitted models. Structural changes constituting the mSASSS scoring systems were the most important contributing factors, and no detectable structural abnormalities at baseline were the most significant factors suppressing mSASSS change.

CONCLUSIONS

Clinical and radiographic data-driven ANN allows precise mSASSS prediction in real-world settings. Correct evaluation and prediction of spinal structural changes could be beneficial for monitoring patients with axSpA and developing a treatment plan.

摘要

背景

由于在真实环境中多种相关因素的复杂相互作用和个体差异,预测中轴型脊柱关节炎(axSpA)的放射学进展仍然有限。因此,我们测试了人工神经网络(ANN)模型预测 axSpA 放射学进展的可行性。

方法

总共将 555 例 axSpA 患者按 3:1 的比例分为训练和测试数据集。根据基线临床特征和治疗相关变量,基于广义线性模型(GLM)和 ANN 模型对随访时间点的改良 Stoke 强直性脊柱炎脊柱评分(mSASSS)的放射学进展进行拟合。评估 mSASSS 预测,并使用可解释的机器学习方法深入了解模型结果或预测。

结果

拟合模型的 R 值在 0.90-0.95 范围内,输入 mSASSS 作为每个评分的数量的 ANN 表现优于 GLM 或输入 mSASSS 作为总分(均方根误差(RMSE)分别为 2.83、2.99-3.57)。ANN 还可以有效地捕捉变量之间的复杂相互作用及其对拟合模型中 mSASSS 随时间变化的影响。构成 mSASSS 评分系统的结构变化是最重要的影响因素,而基线时无明显结构异常是抑制 mSASSS 变化的最重要因素。

结论

基于临床和放射学数据的 ANN 可以实现真实环境中 mSASSS 的精确预测。正确评估和预测脊柱结构变化可能有助于监测 axSpA 患者并制定治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53df/10116698/ff09f5e2a3aa/13075_2023_3050_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验