文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在风湿性疾病分类中的应用:以强直性脊柱炎严重程度检查模型为例。

Application of Artificial Intelligence in rheumatic disease classification: an example of ankylosing spondylitis severity inspection model.

作者信息

Chen Chih-Wei, Tsai Hao-Hung, Yeh Chao-Yuan, Yang Cheng-Kun, Tsou Hsi-Kai, Leong Pui-Ying, Wei James Cheng-Chung

机构信息

Data Finance Innovation (DFI) Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

National Council for Sustainable Development (NCSD), Executive Yuan, Taiwan Govt., Taiwan.

出版信息

Ann Med. 2025 Dec;57(1):2512131. doi: 10.1080/07853890.2025.2512131. Epub 2025 Jun 8.


DOI:10.1080/07853890.2025.2512131
PMID:40485153
Abstract

BACKGROUND: The development of the Artificial Intelligence (AI)-based severity inspection model for ankylosing spondylitis (AS) could support health professionals to rapidly assess the severity of the disease, enhance proficiency, and reduce the demands of human resources. This paper aims to develop an AI-based severity inspection model for AS using patients' X-ray images and modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). METHODS: The numerical simulation with AI is developed following the progress of data preprocessing, building and testing the model, and then the model. The training data is preprocessed by inviting three experts to check the X-ray images of 222 patients following the Gold Standard. The model is then developed through two stages, including keypoint detection and mSASSS evaluation. The two-stage AI-based severity inspection model for AS was developed to automatically detect spine points and evaluate mSASSS scores. At last, the data obtained from the developed model was compared with those from experts' assessment to analyse the accuracy of the model. The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki. RESULTS: The spine point detection at the first stage achieved 1.57 micrometres in mean error distance with the ground truth, and the second stage of the classification network can reach 0.81 in mean accuracy. The model can correctly identify 97.4% patches belonging to mSASSS score 3, while those belonging to score 0 can still be classified into scores 1 or 2. CONCLUSION: The automatic severity inspection model for AS developed in this paper is accurate and can support health professionals in rapidly assessing the severity of AS, enhancing assessment proficiency, and reducing the demands of human resources.

摘要

背景:基于人工智能(AI)的强直性脊柱炎(AS)严重程度检查模型的开发,可以支持医疗专业人员快速评估疾病的严重程度,提高专业水平,并减少人力资源需求。本文旨在利用患者的X射线图像和改良的斯托克强直性脊柱炎脊柱评分(mSASSS)开发一种基于AI的AS严重程度检查模型。 方法:按照数据预处理、模型构建与测试的流程开展AI数值模拟,进而构建模型。通过邀请三位专家按照金标准检查222例患者的X射线图像对训练数据进行预处理。然后分两个阶段开发模型,包括关键点检测和mSASSS评估。开发了基于AI的AS两阶段严重程度检查模型,以自动检测脊柱点并评估mSASSS评分。最后,将从开发的模型中获得的数据与专家评估的数据进行比较,以分析模型的准确性。本研究按照《赫尔辛基宣言》中概述的伦理原则进行。 结果:第一阶段的脊柱点检测与真实情况的平均误差距离为1.57微米,分类网络的第二阶段平均准确率可达0.81。该模型能够正确识别97.4%属于mSASSS评分为3的斑块,而属于评分为0的斑块仍可被分类为评分1或2。 结论:本文开发的AS自动严重程度检查模型准确,能够支持医疗专业人员快速评估AS的严重程度,提高评估水平,并减少人力资源需求。

相似文献

[1]
Application of Artificial Intelligence in rheumatic disease classification: an example of ankylosing spondylitis severity inspection model.

Ann Med. 2025-12

[2]
Radiological scoring methods for ankylosing spondylitis: a comparison between the Bath Ankylosing Spondylitis Radiology Index and the modified Stoke Ankylosing Spondylitis Spine Score.

Clin Exp Rheumatol. 2007

[3]
Comparison of the Bath Ankylosing Spondylitis Radiology Index and the modified Stoke Ankylosing Spondylitis Spine Score in Turkish patients with ankylosing spondylitis.

Clin Rheumatol. 2009-10-8

[4]
Sclerostin rather than Dickkopf-1 is associated with mSASSS but not with disease activity score in patients with ankylosing spondylitis.

Clin Rheumatol. 2018-11-15

[5]
Scoring radiographic progression in ankylosing spondylitis: should we use the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) or the Radiographic Ankylosing Spondylitis Spinal Score (RASSS)?

Arthritis Res Ther. 2013-1-17

[6]
The Burden of Spine Structural Damage on Function in Patients With Axial Spondyloarthritis: Adaptation-Mediated Uncoupling?

J Rheumatol. 2024-8-1

[7]
Higher disease activity leads to more structural damage in the spine in ankylosing spondylitis: 12-year longitudinal data from the OASIS cohort.

Ann Rheum Dis. 2014-5-7

[8]
Determinants of hyperkyphosis in patients with ankylosing spondylitis.

Ann Rheum Dis. 2006-6

[9]
Physical function in ankylosing spondylitis is independently determined by both disease activity and radiographic damage of the spine.

Ann Rheum Dis. 2009-6

[10]
Incorporation of the anteroposterior lumbar radiographs in the modified Stoke Ankylosing Spondylitis Spine Score improves detection of radiographic spinal progression in axial spondyloarthritis.

Arthritis Res Ther. 2019-5-24

本文引用的文献

[1]
Anatomy-centred deep learning improves generalisability and progression prediction in radiographic sacroiliitis detection.

RMD Open. 2024-12-23

[2]
Radiomics-based machine learning model to phenotype hip involvement in ankylosing spondylitis: a pilot study.

Front Immunol. 2024

[3]
Performances of machine learning algorithms in discriminating sacroiliitis features on MRI: a systematic review.

RMD Open. 2023-11-23

[4]
Quantitative prediction of radiographic progression in patients with axial spondyloarthritis using neural network model in a real-world setting.

Arthritis Res Ther. 2023-4-20

[5]
Comprehensive AI-assisted tool for ankylosing spondylitis based on multicenter research outperforms human experts.

Front Public Health. 2023

[6]
Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis.

Rheumatology (Oxford). 2022-10-6

[7]
Editorial: Advances in Pathogenesis, Etiology, and Therapies for Ankylosing Spondylitis.

Front Immunol. 2021-12-23

[8]
An introduction to machine learning and analysis of its use in rheumatic diseases.

Nat Rev Rheumatol. 2021-12

[9]
Differentiation of inflammatory from degenerative changes in the sacroiliac joints by machine learning supported texture analysis.

Eur J Radiol. 2021-7

[10]
A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images.

Nat Biomed Eng. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索