Suppr超能文献

端粒 DNA 由 TRF1、TIN2 和 SA1 压缩的组装路径依赖性。

Assembly path dependence of telomeric DNA compaction by TRF1, TIN2, and SA1.

机构信息

Department of Physics, NC State University, Raleigh, North Carolina.

Department of BioSciences, Rice University, Houston, Texas.

出版信息

Biophys J. 2023 May 16;122(10):1822-1832. doi: 10.1016/j.bpj.2023.04.014. Epub 2023 Apr 20.

Abstract

Telomeres, complexes of DNA and proteins, protect ends of linear chromosomes. In humans, the two shelterin proteins TRF1 and TIN2, along with cohesin subunit SA1, were proposed to mediate telomere cohesion. Although the ability of the TRF1-TIN2 and TRF1-SA1 systems to compact telomeric DNA by DNA-DNA bridging has been reported, the function of the full ternary TRF1-TIN2-SA1 system has not been explored in detail. Here, we quantify the compaction of nanochannel-stretched DNA by the ternary system, as well as its constituents, and obtain estimates of the relative impact of its constituents and their interactions. We find that TRF1, TIN2, and SA1 work synergistically to cause a compaction of the DNA substrate, and that maximal compaction occurs if all three proteins are present. By altering the sequence with which DNA substrates are exposed to proteins, we establish that compaction by TRF1 and TIN2 can proceed through binding of TRF1 to DNA, followed by compaction as TIN2 recognizes the previously bound TRF1. We further establish that SA1 alone can also lead to a compaction, and that compaction in a combined system of all three proteins can be understood as an additive effect of TRF1-TIN2 and SA1-based compaction. Atomic force microscopy of intermolecular aggregation confirms that a combination of TRF1, TIN2, and SA1 together drive strong intermolecular aggregation as it would be required during chromosome cohesion.

摘要

端粒是由 DNA 和蛋白质组成的复合物,可保护线性染色体的末端。在人类中,两种庇护蛋白 TRF1 和 TIN2 以及黏合蛋白亚基 SA1 被提议介导端粒黏合。尽管已经报道了 TRF1-TIN2 和 TRF1-SA1 系统通过 DNA-DNA 桥接来压缩端粒 DNA 的能力,但完整的三元 TRF1-TIN2-SA1 系统的功能尚未详细研究。在这里,我们定量测量了三元系统以及其组成部分对纳米通道拉伸 DNA 的压缩程度,并获得了其组成部分及其相互作用的相对影响的估计值。我们发现 TRF1、TIN2 和 SA1 协同作用导致 DNA 底物的压缩,如果存在所有三种蛋白质,则会发生最大程度的压缩。通过改变 DNA 底物与蛋白质接触的顺序,我们确定了 TRF1 和 TIN2 的压缩可以通过 TRF1 与 DNA 的结合来进行,然后 TIN2 识别先前结合的 TRF1 来进行压缩。我们进一步确定 SA1 本身也可以导致压缩,并且在所有三种蛋白质的组合系统中,压缩可以理解为 TRF1-TIN2 和基于 SA1 的压缩的加性效应。分子间聚集的原子力显微镜证实,TRF1、TIN2 和 SA1 的组合一起可驱动强烈的分子间聚集,这是在染色体黏合过程中所必需的。

相似文献

1
Assembly path dependence of telomeric DNA compaction by TRF1, TIN2, and SA1.
Biophys J. 2023 May 16;122(10):1822-1832. doi: 10.1016/j.bpj.2023.04.014. Epub 2023 Apr 20.
2
Structure, dynamics, and regulation of TRF1-TIN2-mediated trans- and cis-interactions on telomeric DNA.
J Biol Chem. 2021 Sep;297(3):101080. doi: 10.1016/j.jbc.2021.101080. Epub 2021 Aug 14.
3
Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA-DNA pairing.
Nucleic Acids Res. 2016 Jul 27;44(13):6363-76. doi: 10.1093/nar/gkw518. Epub 2016 Jun 13.
4
Human Telomere Repeat Binding Factor TRF1 Replaces TRF2 Bound to Shelterin Core Hub TIN2 when TPP1 Is Absent.
J Mol Biol. 2019 Aug 9;431(17):3289-3301. doi: 10.1016/j.jmb.2019.05.038. Epub 2019 May 31.
5
TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1.
Mol Cell Biol. 2014 Apr;34(7):1349-62. doi: 10.1128/MCB.01052-13. Epub 2014 Jan 27.
6
TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA.
Nucleic Acids Res. 2021 Dec 16;49(22):13000-13018. doi: 10.1093/nar/gkab1142.
8
Modified Peptide Molecules As Potential Modulators of Shelterin Protein Functions; TRF1.
Chemistry. 2023 Oct 2;29(55):e202300970. doi: 10.1002/chem.202300970. Epub 2023 Sep 4.
9
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA.
J Biol Chem. 2016 Oct 7;291(41):21829-21835. doi: 10.1074/jbc.M116.744896. Epub 2016 Aug 25.
10
TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres.
J Biol Chem. 2004 Nov 5;279(45):47264-71. doi: 10.1074/jbc.M409047200. Epub 2004 Aug 16.

本文引用的文献

1
Structure, dynamics, and regulation of TRF1-TIN2-mediated trans- and cis-interactions on telomeric DNA.
J Biol Chem. 2021 Sep;297(3):101080. doi: 10.1016/j.jbc.2021.101080. Epub 2021 Aug 14.
2
It's not just a phase: function and characteristics of RNA-binding proteins in phase separation.
Nat Struct Mol Biol. 2021 Jun;28(6):465-473. doi: 10.1038/s41594-021-00601-w. Epub 2021 Jun 7.
3
Genome folding through loop extrusion by SMC complexes.
Nat Rev Mol Cell Biol. 2021 Jul;22(7):445-464. doi: 10.1038/s41580-021-00349-7. Epub 2021 Mar 25.
4
Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization.
Nat Rev Mol Cell Biol. 2021 Apr;22(4):283-298. doi: 10.1038/s41580-021-00328-y. Epub 2021 Feb 9.
5
Internal Motion of Chromatin Fibers Is Governed by Dynamics of Uncompressed Linker Strands.
Biophys J. 2020 Dec 1;119(11):2326-2334. doi: 10.1016/j.bpj.2020.10.018. Epub 2020 Oct 27.
6
Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion.
Biochem Biophys Res Commun. 2020 Nov 26;533(1):175-180. doi: 10.1016/j.bbrc.2020.06.051. Epub 2020 Sep 18.
7
Phosphorylated CtIP bridges DNA to promote annealing of broken ends.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21403-21412. doi: 10.1073/pnas.2008645117. Epub 2020 Aug 19.
8
DNA looping by two 5-methylcytosine-binding proteins quantified using nanofluidic devices.
Epigenetics Chromatin. 2020 Mar 16;13(1):18. doi: 10.1186/s13072-020-00339-7.
9
Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point.
Int J Mol Sci. 2019 Jun 28;20(13):3186. doi: 10.3390/ijms20133186.
10
Human Telomere Repeat Binding Factor TRF1 Replaces TRF2 Bound to Shelterin Core Hub TIN2 when TPP1 Is Absent.
J Mol Biol. 2019 Aug 9;431(17):3289-3301. doi: 10.1016/j.jmb.2019.05.038. Epub 2019 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验