Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA; Department of Chemistry, University of Kansas, Lawrence, KS, USA.
Biochem Biophys Res Commun. 2020 Nov 26;533(1):175-180. doi: 10.1016/j.bbrc.2020.06.051. Epub 2020 Sep 18.
We demonstrate how a recently developed nanofluidic device can be used to study protein-induced compaction of genome-length DNA freely suspended in solution. The protein we use in this study is the hepatitis C virus core protein (HCVcp), which is a positively charged, intrinsically disordered protein. Using nanofluidic devices in combination with fluorescence microscopy, we observe that protein-induced compaction preferentially begins at the ends of linear DNA. This observation would be difficult to make with many other single-molecule techniques, which generally require the DNA ends to be anchored to a substrate. We also demonstrate that this protein-induced compaction is reversible and can be dynamically modulated by exposing the confined DNA molecules to solutions containing either HCVcp (to promote compaction) or Proteinase K (to disassemble the compact nucleo-protein complex). Although the natural binding partner for HCVcp is genomic viral RNA, the general biophysical principles governing protein-induced compaction of DNA are likely relevant for a broad range of nucleic acid-binding proteins and their targets.
我们展示了一种新开发的纳流控设备如何用于研究在溶液中自由悬浮的基因组长度 DNA 所发生的蛋白诱导压缩。我们在这项研究中使用的蛋白是丙型肝炎病毒核心蛋白(HCVcp),它是一种带正电荷的、无规卷曲的蛋白。通过纳流控设备与荧光显微镜的结合,我们观察到蛋白诱导的压缩优先从线性 DNA 的末端开始。这一观察结果对于许多其他单分子技术来说是很难实现的,因为这些技术通常需要 DNA 末端锚定在底物上。我们还证明了这种蛋白诱导的压缩是可逆的,并且可以通过将受约束的 DNA 分子暴露于含有 HCVcp(促进压缩)或蛋白酶 K(使紧凑核蛋白复合物解体)的溶液中进行动态调节。虽然 HCVcp 的天然结合伴侣是基因组病毒 RNA,但控制 DNA 蛋白诱导压缩的一般生物物理原理可能与广泛的核酸结合蛋白及其靶标相关。