Suppr超能文献

纳米受限 DNA 被无规卷曲大分子抗衡离子实时压实。

Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion.

机构信息

Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA; Department of Chemistry, University of Kansas, Lawrence, KS, USA.

出版信息

Biochem Biophys Res Commun. 2020 Nov 26;533(1):175-180. doi: 10.1016/j.bbrc.2020.06.051. Epub 2020 Sep 18.

Abstract

We demonstrate how a recently developed nanofluidic device can be used to study protein-induced compaction of genome-length DNA freely suspended in solution. The protein we use in this study is the hepatitis C virus core protein (HCVcp), which is a positively charged, intrinsically disordered protein. Using nanofluidic devices in combination with fluorescence microscopy, we observe that protein-induced compaction preferentially begins at the ends of linear DNA. This observation would be difficult to make with many other single-molecule techniques, which generally require the DNA ends to be anchored to a substrate. We also demonstrate that this protein-induced compaction is reversible and can be dynamically modulated by exposing the confined DNA molecules to solutions containing either HCVcp (to promote compaction) or Proteinase K (to disassemble the compact nucleo-protein complex). Although the natural binding partner for HCVcp is genomic viral RNA, the general biophysical principles governing protein-induced compaction of DNA are likely relevant for a broad range of nucleic acid-binding proteins and their targets.

摘要

我们展示了一种新开发的纳流控设备如何用于研究在溶液中自由悬浮的基因组长度 DNA 所发生的蛋白诱导压缩。我们在这项研究中使用的蛋白是丙型肝炎病毒核心蛋白(HCVcp),它是一种带正电荷的、无规卷曲的蛋白。通过纳流控设备与荧光显微镜的结合,我们观察到蛋白诱导的压缩优先从线性 DNA 的末端开始。这一观察结果对于许多其他单分子技术来说是很难实现的,因为这些技术通常需要 DNA 末端锚定在底物上。我们还证明了这种蛋白诱导的压缩是可逆的,并且可以通过将受约束的 DNA 分子暴露于含有 HCVcp(促进压缩)或蛋白酶 K(使紧凑核蛋白复合物解体)的溶液中进行动态调节。虽然 HCVcp 的天然结合伴侣是基因组病毒 RNA,但控制 DNA 蛋白诱导压缩的一般生物物理原理可能与广泛的核酸结合蛋白及其靶标相关。

相似文献

1
Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion.
Biochem Biophys Res Commun. 2020 Nov 26;533(1):175-180. doi: 10.1016/j.bbrc.2020.06.051. Epub 2020 Sep 18.
2
Disordered RNA chaperones can enhance nucleic acid folding via local charge screening.
Nat Commun. 2019 Jun 5;10(1):2453. doi: 10.1038/s41467-019-10356-0.
3
Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions.
Protein Sci. 2015 Feb;24(2):221-35. doi: 10.1002/pro.2608. Epub 2014 Dec 31.
4
Conformational Plasticity of Hepatitis C Virus Core Protein Enables RNA-Induced Formation of Nucleocapsid-like Particles.
J Mol Biol. 2018 Aug 3;430(16):2453-2467. doi: 10.1016/j.jmb.2017.10.010. Epub 2017 Oct 16.
5
Effect of HU protein on the conformation and compaction of DNA in a nanochannel.
Soft Matter. 2018 Mar 28;14(12):2322-2328. doi: 10.1039/c7sm02118f. Epub 2018 Feb 19.
6
In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2561-9. doi: 10.1016/j.febslet.2015.08.014. Epub 2015 Aug 20.
7
Dissecting the oligonucleotide binding properties of a disordered chaperone protein using surface plasmon resonance.
Nucleic Acids Res. 2013 Dec;41(22):10414-25. doi: 10.1093/nar/gkt792. Epub 2013 Sep 11.
9
Exploring DNA-protein interactions on the single DNA molecule level using nanofluidic tools.
Integr Biol (Camb). 2017 Aug 14;9(8):650-661. doi: 10.1039/c7ib00085e.

引用本文的文献

1
The Emergence of Nanofluidics for Single-Biomolecule Manipulation and Sensing.
Anal Chem. 2025 Apr 29;97(16):8641-8653. doi: 10.1021/acs.analchem.4c06684. Epub 2025 Apr 17.
2
Biological Amyloids Chemically Damage DNA.
ACS Chem Neurosci. 2025 Feb 5;16(3):355-364. doi: 10.1021/acschemneuro.4c00461. Epub 2025 Jan 9.
3
Assembly path dependence of telomeric DNA compaction by TRF1, TIN2, and SA1.
Biophys J. 2023 May 16;122(10):1822-1832. doi: 10.1016/j.bpj.2023.04.014. Epub 2023 Apr 20.
4
Apolar chemical environments compact unfolded RNAs and can promote folding.
Biophys Rep (N Y). 2021 Sep 8;1(1). doi: 10.1016/j.bpr.2021.100004. Epub 2021 Jul 21.
5
The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA.
Nucleic Acids Res. 2021 May 7;49(8):4550-4563. doi: 10.1093/nar/gkab236.

本文引用的文献

1
Disordered RNA chaperones can enhance nucleic acid folding via local charge screening.
Nat Commun. 2019 Jun 5;10(1):2453. doi: 10.1038/s41467-019-10356-0.
4
Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis.
J Chem Phys. 2018 Dec 7;149(21):215101. doi: 10.1063/1.5051319.
5
Conformational Plasticity of Hepatitis C Virus Core Protein Enables RNA-Induced Formation of Nucleocapsid-like Particles.
J Mol Biol. 2018 Aug 3;430(16):2453-2467. doi: 10.1016/j.jmb.2017.10.010. Epub 2017 Oct 16.
6
Exploring DNA-protein interactions on the single DNA molecule level using nanofluidic tools.
Integr Biol (Camb). 2017 Aug 14;9(8):650-661. doi: 10.1039/c7ib00085e.
9
Fast size-determination of intact bacterial plasmids using nanofluidic channels.
Lab Chip. 2015 Jul 7;15(13):2739-43. doi: 10.1039/c5lc00378d. Epub 2015 May 21.
10
DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level.
Methods Cell Biol. 2014;123:217-34. doi: 10.1016/B978-0-12-420138-5.00012-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验