Suppr超能文献

通过微阵列数据集的综合分析鉴定先天性巨结肠症潜在的转录调控网络。

Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets.

作者信息

Xu Wenyao, Yu Hui, Chen Dian, Pan Weikang, Yang Weili, Miao Jing, Jia Wanying, Zheng Baijun, Liu Yong, Chen Xinlin, Gao Ya, Tian Donghao

机构信息

Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.

Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China.

出版信息

World J Pediatr Surg. 2023 Apr 17;6(2):e000547. doi: 10.1136/wjps-2022-000547. eCollection 2023.

Abstract

OBJECTIVE

Hirschsprung disease (HSCR) is one of the common neurocristopathies in children, which is associated with at least 20 genes and involves a complex regulatory mechanism. Transcriptional regulatory network (TRN) has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR. This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR.

METHODS

Based on three microarray datasets from the Gene Expression Omnibus database, the multiMiR package was used to investigate the microRNA (miRNA)-target interactions, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we collected transcription factors (TFs) from the TransmiR database to construct the TF-miRNA-mRNA regulatory network and used cytoHubba to identify the key modules. Finally, the receiver operating characteristic (ROC) curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method.

RESULTS

We identified 58 hub differentially expressed microRNAs (DEMis) and 16 differentially expressed mRNAs (DEMs). The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms, including neurogenesis, cell-substrate adhesion, PI3K-Akt, Ras/mitogen-activated protein kinase and Rho/ROCK signaling. Moreover, 2 TFs ( and ), 4 miRNAs (, , , and ), and 4 mRNAs (, , , and ) were identified to construct the TF-miRNA-mRNA regulatory network. ROC analysis revealed a strong diagnostic value of the key TRN regulons (all area under the curve values were more than 0.8).

CONCLUSION

This study suggests a potential role of the TF-miRNA-mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.

摘要

目的

先天性巨结肠病(HSCR)是儿童常见的神经嵴病之一,与至少20个基因相关,涉及复杂的调控机制。转录调控网络(TRN)在调节基因表达和肠道神经系统发育方面已被广泛报道,但在HSCR中仍有待研究。本研究旨在确定与HSCR发病机制和诊断相关的潜在TRN。

方法

基于基因表达综合数据库中的三个微阵列数据集,使用multiMiR软件包研究微小RNA(miRNA)-靶标相互作用,随后进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。然后,我们从TransmiR数据库收集转录因子(TF)以构建TF-miRNA-mRNA调控网络,并使用cytoHubba识别关键模块。最后,确定受试者工作特征(ROC)曲线,并通过支持向量机方法基于机器学习建立综合诊断模型。

结果

我们鉴定出58个枢纽差异表达微小RNA(DEMi)和16个差异表达信使核糖核酸(DEM)。DEMi和DEM的可靠靶基因主要富集于几个GO/KEGG术语,包括神经发生、细胞-基质粘附、PI3K-Akt、Ras/丝裂原活化蛋白激酶和Rho/ROCK信号传导。此外,鉴定出2个TF( 和 )、4个miRNA( 、 、 和 )和4个mRNA( 、 、 和 )以构建TF-miRNA-mRNA调控网络。ROC分析显示关键TRN调控子具有很强的诊断价值(所有曲线下面积值均大于0.8)。

结论

本研究表明TF-miRNA-mRNA网络具有潜在作用,有助于丰富HSCR发病机制和诊断的内涵,并为治疗提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ff4/10111925/9ba010d6474e/wjps-2022-000547f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验