Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia.
Nat Commun. 2023 Feb 1;14(1):538. doi: 10.1038/s41467-023-36166-z.
Interfaces in heavy metal (HM) - antiferromagnetic insulator (AFI) heterostructures have recently become highly investigated and debated systems in the effort to create spintronic devices that function at terahertz frequencies. Such heterostructures have great technological potential because AFIs can generate sub-picosecond spin currents which the HMs can convert into charge signals. In this work we demonstrate an optically induced picosecond spin transfer at the interface between AFIs and Pt using time-domain THz emission spectroscopy. We select two antiferromagnets in the same family of fluoride cubic perovskites, KCoF and KNiF, whose magnon frequencies at the centre of the Brillouin zone differ by an order of magnitude. By studying their behaviour with temperature, we correlate changes in the spin transfer efficiency across the interface to the opening of a gap in the magnon density of states below the Néel temperature. Our observations are reproduced in a model based on the spin exchange between the localized electrons in the antiferromagnet and the free electrons in Pt. Through this comparative study of selected materials, we are able to shine light on the microscopy of spin transfer at picosecond timescales between antiferromagnets and heavy metals and identify a key figure of merit for its efficiency: the magnon gap. Our results are important for progressing in the fundamental understanding of the highly discussed physics of the HM/AFI interfaces, which is the necessary cornerstone for the designing of femtosecond antiferromagnetic spintronics devices with optimized characteristics.
在重金属 (HM) - 反铁磁绝缘体 (AFI) 异质结构中,界面最近成为高度研究和争论的系统,以创建在太赫兹频率下工作的自旋电子器件。这种异质结构具有巨大的技术潜力,因为 AFI 可以产生亚皮秒自旋电流,而 HM 可以将其转换为电荷信号。在这项工作中,我们使用时域太赫兹发射光谱演示了在 AFI 和 Pt 之间的界面处发生的光诱导皮秒自旋转移。我们选择了氟化物立方钙钛矿族中的两种反铁磁体,KCoF 和 KNiF,它们在布里渊区中心的磁子频率相差一个数量级。通过研究它们随温度的行为,我们将界面处自旋转移效率的变化与奈尔温度以下磁子态密度中的能隙的打开相关联。我们的观察结果在基于反铁磁体中局域电子和 Pt 中自由电子之间的自旋交换的模型中得到重现。通过对选定材料的比较研究,我们能够在皮秒时间尺度上揭示反铁磁体和重金属之间的自旋转移的微观结构,并确定其效率的一个关键衡量标准:磁子能隙。我们的结果对于深入理解 HM/AFI 界面备受讨论的物理特性具有重要意义,这是设计具有优化特性的飞秒反铁磁自旋电子器件的必要基石。