González-Hernández Rafael, Šmejkal Libor, Výborný Karel, Yahagi Yuta, Sinova Jairo, Jungwirth Tomáš, Železný Jakub
Grup de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla 081008, Colombia.
Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany.
Phys Rev Lett. 2021 Mar 26;126(12):127701. doi: 10.1103/PhysRevLett.126.127701.
Spin-current generation by electrical means is among the core phenomena driving the field of spintronics. Using ab initio calculations we show that a room-temperature metallic collinear antiferromagnet RuO_{2} allows for highly efficient spin-current generation, arising from anisotropically spin-split bands with conserved up and down spins along the Néel vector axis. The zero net moment antiferromagnet acts as an electrical spin splitter with a 34° propagation angle between spin-up and spin-down currents. The corresponding spin conductivity is a factor of 3 larger than the record value from a survey of 20 000 nonmagnetic spin-Hall materials. We propose a versatile spin-splitter-torque concept circumventing limitations of spin-transfer and spin-orbit torques in present magnetic memory devices.
通过电学方法产生自旋电流是推动自旋电子学领域发展的核心现象之一。我们利用第一性原理计算表明,室温下的金属共线反铁磁体RuO₂能够实现高效的自旋电流产生,这源于沿奈尔矢量轴具有守恒的上自旋和下自旋的各向异性自旋分裂能带。零净磁矩反铁磁体充当电自旋分离器,自旋向上和自旋向下电流之间的传播角为34°。相应的自旋电导率比从对20000种非磁性自旋霍尔材料的调查中得到的记录值大3倍。我们提出了一种通用的自旋分离器 - 转矩概念,规避了当前磁存储器件中自旋转移和自旋轨道转矩的限制。