Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America.
Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America.
PLoS Comput Biol. 2023 Apr 21;19(4):e1011059. doi: 10.1371/journal.pcbi.1011059. eCollection 2023 Apr.
Multistep protein-protein interactions underlie most biological processes, but their characterization through methods such as isothermal titration calorimetry (ITC) is largely confined to simple models that provide little information on the intermediate, individual steps. In this study, we primarily examine the essential hub protein LC8, a small dimer that binds disordered regions of 100+ client proteins in two symmetrical grooves at the dimer interface. Mechanistic details of LC8 binding have remained elusive, hampered in part by ITC data analyses employing simple models that treat bivalent binding as a single event with a single binding affinity. We build on existing Bayesian ITC approaches to quantify thermodynamic parameters for multi-site binding interactions impacted by significant uncertainty in protein concentration. Using a two-site binding model, we identify positive cooperativity with high confidence for LC8 binding to multiple client peptides. In contrast, application of an identical model to the two-site binding between the coiled-coil NudE dimer and the intermediate chain of dynein reveals little evidence of cooperativity. We propose that cooperativity in the LC8 system drives the formation of saturated induced-dimer structures, the functional units of most LC8 complexes. In addition to these system-specific findings, our work advances general ITC analysis in two ways. First, we describe a previously unrecognized mathematical ambiguity in concentrations in standard binding models and clarify how it impacts the precision with which binding parameters are determinable in cases of high uncertainty in analyte concentrations. Second, building on observations in the LC8 system, we develop a system-agnostic heat map of practical parameter identifiability calculated from synthetic data which demonstrates that the ability to determine microscopic binding parameters is strongly dependent on both the parameters themselves and experimental conditions. The work serves as a foundation for determination of multi-step binding interactions, and we outline best practices for Bayesian analysis of ITC experiments.
多步骤蛋白质-蛋白质相互作用是大多数生物过程的基础,但通过等温滴定量热法(ITC)等方法对其进行表征在很大程度上仅限于简单的模型,这些模型几乎无法提供关于中间步骤的信息。在这项研究中,我们主要研究了基本的核心蛋白 LC8,它是一个小分子二聚体,在二聚体界面的两个对称凹槽中结合了 100 多个客户蛋白的无序区域。LC8 结合的机制细节仍然难以捉摸,部分原因是 ITC 数据分析采用了简单的模型,将二价结合视为具有单一结合亲和力的单个事件。我们基于现有的贝叶斯 ITC 方法,针对受蛋白质浓度显著不确定性影响的多站点结合相互作用来量化热力学参数。使用双位点结合模型,我们确定了 LC8 与多个客户肽结合的正协同作用,置信度很高。相比之下,将相同的模型应用于卷曲螺旋 NudE 二聚体和动力蛋白中间链之间的双位点结合,几乎没有协同作用的证据。我们提出,LC8 系统中的协同作用驱动了饱和诱导二聚体结构的形成,这是大多数 LC8 复合物的功能单位。除了这些特定于系统的发现外,我们的工作还在两个方面推进了一般的 ITC 分析。首先,我们描述了标准结合模型中浓度的一个以前未被认识到的数学歧义,并阐明了它如何影响在分析物浓度存在高度不确定性的情况下确定结合参数的精度。其次,基于 LC8 系统的观察结果,我们开发了一个从合成数据计算的实用参数可识别性的无偏热图,该图表明确定微观结合参数的能力强烈依赖于参数本身和实验条件。这项工作为确定多步骤结合相互作用奠定了基础,并概述了 ITC 实验的贝叶斯分析的最佳实践。