Otten Lisa, Walker Douglas R, Barbar Elisar J, Zuckerman Daniel M
Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America.
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America.
bioRxiv. 2025 Jul 11:2025.07.09.663792. doi: 10.1101/2025.07.09.663792.
Isothermal titration calorimetry (ITC) is a powerful technique for probing biomolecular interactions. However, accurate determination of binding parameters-such as enthalpy and free energy-as well as associated uncertainties can be hindered by noise and concentration variability. Notably, the mathematical ambiguity surrounding analyte concentrations in standard binding models intrinsically limits the precision with which binding parameters, particularly binding enthalpies, can be determined. Here, we present a Bayesian pipeline that resolves this ambiguity by combining two key strategies: simultaneous analysis of multiple ITC datasets and a hierarchical Bayesian treatment of analyte concentration priors. This dual approach not only lifts the degeneracy inherent in single-dataset studies but also removes an ambiguity typically present in Bayesian analysis by self-consistently refining concentration estimates, ensuring optimal joint inference of binding parameters and concentrations. Using modern Monte Carlo techniques enables our pipeline to provide robust posterior sampling for more than 10 datasets and 40 total parameters. We validate the approach with synthetic ITC datasets for single- and multi-site binding models and apply it to experimental data, including 14 datasets for 1:1 binding of Mg(II) to the chelator EDTA and multiple datasets of the hub protein LC8 with diverse binding partners. This work serves as a foundation for improving the precision of binding constants using multiple ITC datasets, while providing a systematic framework for assessing the reliability of experimental concentration estimates, paving the way for more accurate biomolecular interaction studies.
等温滴定量热法(ITC)是一种用于探究生物分子相互作用的强大技术。然而,噪声和浓度变异性可能会阻碍对结合参数(如焓和自由能)以及相关不确定性的准确测定。值得注意的是,标准结合模型中围绕分析物浓度的数学模糊性本质上限制了结合参数(特别是结合焓)的测定精度。在这里,我们提出了一种贝叶斯方法,通过结合两个关键策略来解决这种模糊性:同时分析多个ITC数据集和对分析物浓度先验进行分层贝叶斯处理。这种双重方法不仅消除了单数据集研究中固有的简并性,还通过自洽地细化浓度估计来消除贝叶斯分析中通常存在的模糊性,确保对结合参数和浓度进行最佳联合推断。使用现代蒙特卡罗技术使我们的方法能够为超过10个数据集和40个总参数提供稳健的后验采样。我们用单位点和多位点结合模型的合成ITC数据集验证了该方法,并将其应用于实验数据,包括镁(II)与螯合剂乙二胺四乙酸(EDTA)1:1结合的14个数据集以及中心蛋白LC8与多种结合伙伴的多个数据集。这项工作为使用多个ITC数据集提高结合常数的精度奠定了基础,同时提供了一个系统框架来评估实验浓度估计的可靠性,为更准确的生物分子相互作用研究铺平了道路。