Suppr超能文献

贝叶斯回归比误差传播更准确地量化了等温滴定量热法中结合参数的不确定性。

Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation.

机构信息

Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA.

Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.

出版信息

Int J Mol Sci. 2023 Oct 11;24(20):15074. doi: 10.3390/ijms242015074.

Abstract

We compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible interval. When the methods are applied to simulated experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to observed confidence intervals.

摘要

我们比较了几种不同的方法来量化从等温滴定量热法数据估计的结合参数的不确定性

最大似然估计的渐近标准误差、基于一阶泰勒级数展开的误差传播,以及贝叶斯可信区间。当这些方法应用于模拟实验和 EDTA 与 Mg(II) 结合的测量时,渐近标准误差低估了结合自由能和焓的不确定性。误差传播高估了这两个量的不确定性,除了在模拟中,对于置信区间小于 70%的情况,它低估了焓的不确定性。在这两个数据集,贝叶斯可信区间都更接近观察到的置信区间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7d/10606514/99a058678c30/ijms-24-15074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验