Suppr超能文献

成功预测LC8与内在无序蛋白质的结合揭示了AlphaFold的黑箱奥秘。

Successful prediction of LC8 binding to intrinsically disordered proteins sheds light on AlphaFold's black box.

作者信息

Walker Douglas R, Fujimura Gretchen, Vanegas Juan M, Barbar Elisar J

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States.

出版信息

Front Mol Biosci. 2025 Apr 23;12:1531793. doi: 10.3389/fmolb.2025.1531793. eCollection 2025.

Abstract

INTRODUCTION

LC8 is a hub protein involved in many processes from tumor suppression and cell cycle regulation to neurotransmission and viral infection. Despite recent progress, prediction of binding sites for LC8 is plagued by motif variability and a multitude of weakly binding motifs, especially when binding depends on multivalency. Our binding site prediction algorithm, LC8Pred has proven useful for uncovering new LC8 binders, but is insufficient for finding all LC8 binding sites.

METHODS

To address this, we probed the ability of a general structure predictor, AlphaFold, to predict whether a given sequence binds to LC8. Certain combinations of in-built AlphaFold scores were extracted and distributions of scores of binders were compared to scores of nonbinders.

RESULTS

AlphaFold successfully places proteins at the correct interface of LC8. A set of threshold values of built-in AlphaFold scores enables differentiation between known binders and nonbinders with minimal false positive (8%) and acceptable false negative rates (20%). This cutoff, along with a more inclusive cutoff, was used to predict elusive LC8 binding sites in proteins known to bind LC8.

DISCUSSION

Correlations between binding affinities and AlphaFold scores provide insight into the black box and indicate that AlphaFold learned an inaccurate energy function that nevertheless is useful for making inferences and conclusions about physical systems. Binding sites predicted by this method can be prioritized for investigation by comparing to result by LC8Pred, local structure, and evolutionary conservation.

摘要

引言

LC8是一种中枢蛋白,参与从肿瘤抑制、细胞周期调控到神经传递和病毒感染等许多过程。尽管最近取得了进展,但LC8结合位点的预测受到基序变异性和大量弱结合基序的困扰,特别是当结合依赖于多价性时。我们的结合位点预测算法LC8Pred已被证明有助于发现新的LC8结合物,但不足以找到所有的LC8结合位点。

方法

为了解决这个问题,我们探究了通用结构预测工具AlphaFold预测给定序列是否与LC8结合的能力。提取了内置AlphaFold分数的某些组合,并将结合物的分数分布与非结合物的分数分布进行比较。

结果

AlphaFold成功地将蛋白质定位在LC8的正确界面上。一组内置AlphaFold分数的阈值能够区分已知的结合物和非结合物,假阳性率最低(8%),假阴性率可接受(20%)。这个临界值,以及一个更具包容性的临界值,被用于预测已知与LC8结合的蛋白质中难以捉摸的LC8结合位点。

讨论

结合亲和力与AlphaFold分数之间的相关性为这个黑箱提供了见解,并表明AlphaFold学习到了一个不准确的能量函数,尽管如此,这个函数对于对物理系统进行推断和得出结论仍然是有用的。通过与LC8Pred的结果、局部结构和进化保守性进行比较,可以对用这种方法预测的结合位点进行优先研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de9/12057147/6316dc3b4247/fmolb-12-1531793-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验