KU Leuven, MeBioS division, Willem de Croylaan 42, B-3001, Leuven, Belgium.
Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands.
J Exp Bot. 2023 Aug 3;74(14):4125-4142. doi: 10.1093/jxb/erad138.
Chloroplasts movement within mesophyll cells in C4 plants is hypothesized to enhance the CO2 concentrating mechanism, but this is difficult to verify experimentally. A three-dimensional (3D) leaf model can help analyse how chloroplast movement influences the operation of the CO2 concentrating mechanism. The first volumetric reaction-diffusion model of C4 photosynthesis that incorporates detailed 3D leaf anatomy, light propagation, ATP and NADPH production, and CO2, O2 and bicarbonate concentration driven by diffusional and assimilation/emission processes was developed. It was implemented for maize leaves to simulate various chloroplast movement scenarios within mesophyll cells: the movement of all mesophyll chloroplasts towards bundle sheath cells (aggregative movement) and movement of only those of interveinal mesophyll cells towards bundle sheath cells (avoidance movement). Light absorbed by bundle sheath chloroplasts relative to mesophyll chloroplasts increased in both cases. Avoidance movement decreased light absorption by mesophyll chloroplasts considerably. Consequently, total ATP and NADPH production and net photosynthetic rate increased for aggregative movement and decreased for avoidance movement compared with the default case of no chloroplast movement at high light intensities. Leakiness increased in both chloroplast movement scenarios due to the imbalance in energy production and demand in mesophyll and bundle sheath cells. These results suggest the need to design strategies for coordinated increases in electron transport and Rubisco activities for an efficient CO2 concentrating mechanism at very high light intensities.
C4 植物中叶肉细胞中的叶绿体运动被假设为可以增强 CO2 浓缩机制,但这很难通过实验来验证。一个三维(3D)叶片模型可以帮助分析叶绿体运动如何影响 CO2 浓缩机制的运作。首次提出了一个包含详细 3D 叶片解剖结构、光传播、ATP 和 NADPH 产生以及由扩散和同化/排放过程驱动的 CO2、O2 和碳酸氢盐浓度的 3D 体积反应扩散模型,用于模拟玉米叶片中各种叶肉细胞内叶绿体运动的情景:所有叶肉叶绿体向维管束鞘细胞的运动(聚集运动)和仅那些间生叶肉细胞中的叶绿体向维管束鞘细胞的运动(回避运动)。在这两种情况下,相对于叶肉叶绿体,束鞘叶绿体吸收的光都增加了。回避运动大大减少了叶肉叶绿体的光吸收。因此,与没有叶绿体在高光强下运动的默认情况相比,聚集运动增加了总 ATP 和 NADPH 的产生和净光合速率,而回避运动则减少了。由于在叶肉和束鞘细胞中能量产生和需求的不平衡,在两种叶绿体运动情景下,通透性都增加了。这些结果表明,需要设计协调增加电子传递和 Rubisco 活性的策略,以在非常高光强下实现高效的 CO2 浓缩机制。