Harwood Richard
School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia.
AoB Plants. 2023 Jun 4;15(3):plad033. doi: 10.1093/aobpla/plad033. eCollection 2023 Jun.
When microscopy meets modelling the exciting concept of a 'virtual leaf' is born. The goal of a 'virtual leaf' is to capture complex physiology in a virtual environment, resulting in the capacity to run experiments computationally. One example of a 'virtual leaf' application is capturing 3D anatomy from volume microscopy data and estimating where water evaporates in the leaf and the proportions of apoplastic, symplastic and gas phase water transport. The same 3D anatomy could then be used to improve established 3D reaction-diffusion models, providing a better understanding of the transport of CO across the stomata, through the airspace and across the mesophyll cell wall. This viewpoint discusses recent progress that has been made in transitioning from a bulk leaf approach to a 3D understanding of leaf physiology, in particular, the movement of CO and HO within the leaf.
当显微镜技术与建模相结合时,“虚拟叶片”这一令人兴奋的概念便应运而生。“虚拟叶片”的目标是在虚拟环境中捕捉复杂的生理过程,从而具备通过计算进行实验的能力。“虚拟叶片”应用的一个例子是从体显微镜数据中获取三维解剖结构,并估计叶片中水分蒸发的位置以及质外体、共质体和气相水分运输的比例。然后,相同的三维解剖结构可用于改进已有的三维反应扩散模型,从而更好地理解二氧化碳通过气孔、气腔和叶肉细胞壁的运输过程。本文观点讨论了从整体叶片研究方法向叶片生理过程的三维理解转变过程中所取得的最新进展,特别是二氧化碳和水在叶片内的移动。