Lehtola Susi, Marques Miguel A L
Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA.
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany.
J Chem Phys. 2022 Nov 7;157(17):174114. doi: 10.1063/5.0121187.
Most computational studies in chemistry and materials science are based on the use of density functional theory. Although the exact density functional is unknown, several density functional approximations (DFAs) offer a good balance of affordable computational cost and semi-quantitative accuracy for applications. The development of DFAs still continues on many fronts, and several new DFAs aiming for improved accuracy are published every year. However, the numerical behavior of these DFAs is an often-overlooked problem. In this work, we look at all 592 DFAs for three-dimensional systems available in Libxc 5.2.2 and examine the convergence of the density functional total energy based on tabulated atomic Hartree-Fock wave functions. We show that several recent DFAs, including the celebrated SCAN family of functionals, show impractically slow convergence with typically used numerical quadrature schemes, making these functionals unsuitable both for routine applications and high-precision studies, as thousands of radial quadrature points may be required to achieve sub-μE accurate total energies for these functionals, while standard quadrature grids like the SG-3 grid only contain O(100) radial quadrature points. These results are both a warning to users to always check the sufficiency of the quadrature grid when adopting novel functionals, as well as a guideline to the theory community to develop better-behaved density functionals.
化学和材料科学中的大多数计算研究都基于密度泛函理论的应用。尽管精确的密度泛函尚不清楚,但几种密度泛函近似(DFA)在可承受的计算成本和应用的半定量精度之间提供了良好的平衡。DFA的发展仍在多个方面持续进行,每年都会发表几种旨在提高精度的新DFA。然而,这些DFA的数值行为是一个经常被忽视的问题。在这项工作中,我们研究了Libxc 5.2.2中可用的针对三维系统的所有592种DFA,并基于列表化的原子Hartree-Fock波函数研究了密度泛函总能量的收敛性。我们表明,包括著名的SCAN泛函族在内的几种近期DFA,在典型的数值积分方案下收敛速度极慢,这使得这些泛函既不适用于常规应用,也不适用于高精度研究,因为对于这些泛函,可能需要数千个径向积分点才能实现亚微埃精度的总能量,而像SG-3网格这样的标准积分网格仅包含O(100)个径向积分点。这些结果既是对用户的一个警告,即在采用新泛函时要始终检查积分网格的充分性,也是给理论界的一个指导方针,以开发行为更好的密度泛函。