Suppr超能文献

产热梭菌的详细基因组代谢模型研究了焦磷酸用于驱动糖酵解的来源。

A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis.

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA.

Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

Metab Eng. 2023 May;77:306-322. doi: 10.1016/j.ymben.2023.04.003. Epub 2023 Apr 20.

Abstract

Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PP) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PP sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PP synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PP-generating cycles. In all cases, the metabolic cost of PP synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PP could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PP sources likely account for most PP production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PP levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.

摘要

木质纤维素生物质是化学制造的丰富且可再生的碳源,但在传统工艺中却很繁琐。嗜热厌氧菌热纤梭菌是一种很有前途且越来越受研究关注的木质纤维素生物加工候选物,因为它有可能在高底物负荷下从木质纤维素生物质中生产乙醇、有机酸和氢气。该菌具有非典型的糖酵解途径,在某些步骤(包括能量投资阶段)中替代 ATP 使用 GTP 或焦磷酸(PP),因此鉴定和操纵 PP 来源是其代谢工程的关键。先前鉴定主要焦磷酸的努力均未成功。在这里,我们通过重建、更新和分析热纤梭菌的新基因组尺度代谢模型 iCTH669 来探索焦磷酸代谢。与之前的 GEM iCBI655 相比,对数百个变化进行了修改,包括更正辅因子使用、解决电荷和元素平衡、标准化生物质组成以及纳入最新的实验证据,从而使 MEMOTE 评分提高到 94%。我们发现 iCTH669 模型预测与所有可用发酵和生物质产量数据集一致。通过 iCTH669 模型评估了数百种新发现和先前提出的 PP 合成途径的可行性,包括生物质合成、tRNA 合成、新发现的来源和先前提出的产生 PP 的循环。在所有情况下,PP 合成的代谢成本最多相当于一个 ATP 的投资,这表明在热纤梭菌中,辅因子替代没有直接的能量优势。尽管模型无法推断出 PP 的独特来源,但结合基因表达数据,两种最可能的情况出现了。首先,先前研究过的 PP 来源可能占野生型菌株中大多数 PP 的产生。其次,如 iCTH669 编码的替代代谢途径可以在先前研究的合成循环被破坏时共同维持 PP 水平。模型 iCTH669 可在 github.com/maranasgroup/iCTH669 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验