Suppr超能文献

无细胞系统生物学:用三酶级联反应表征 的中心代谢。

Cell-Free Systems Biology: Characterizing Central Metabolism of with a Three-Enzyme Cascade Reaction.

机构信息

Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, United States.

National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United States.

出版信息

ACS Synth Biol. 2024 Nov 15;13(11):3587-3599. doi: 10.1021/acssynbio.4c00405. Epub 2024 Oct 10.

Abstract

Genetic approaches have been traditionally used to understand microbial metabolism, but this process can be slow in nonmodel organisms due to limited genetic tools. An alternative approach is to study metabolism directly in the cell lysate. This avoids the need for genetic tools and is routinely used to study individual enzymatic reactions but is not generally used to study systems-level properties of metabolism. Here we demonstrate a new approach that we call "cell-free systems biology", where we use well-characterized enzymes and multienzyme cascades to serve as sources or sinks of intermediate metabolites. This allows us to isolate subnetworks within metabolism and study their systems-level properties. To demonstrate this, we worked with a three-enzyme cascade reaction that converts pyruvate to 2,3-butanediol. Although it has been previously used in cell-free systems, its pH dependence was not well characterized, limiting its utility as a sink for pyruvate. We showed that improved proton accounting allowed better prediction of pH changes and that active pH control allowed 2,3-butanediol titers of up to 2.1 M (189 g/L) from acetoin and 1.6 M (144 g/L) from pyruvate. The improved proton accounting provided a crucial insight that preventing the escape of CO from the system largely eliminated the need for active pH control, dramatically simplifying our experimental setup. We then used this cascade reaction to understand limits to product formation in , an organism with potential applications for cellulosic biofuel production. We showed that the fate of pyruvate is largely controlled by electron availability and that reactions upstream of pyruvate limit overall product formation.

摘要

遗传方法传统上被用于理解微生物代谢,但在非模式生物中,由于遗传工具有限,这个过程可能很慢。另一种方法是直接在细胞裂解物中研究代谢。这避免了对遗传工具的需求,通常用于研究单个酶反应,但一般不用于研究代谢的系统水平特性。在这里,我们展示了一种新的方法,我们称之为“无细胞系统生物学”,在这种方法中,我们使用经过充分表征的酶和多酶级联作为中间代谢物的源或汇。这使我们能够分离代谢中的子网络并研究其系统水平特性。为了证明这一点,我们使用了一个三酶级联反应,将丙酮酸转化为 2,3-丁二醇。尽管它以前曾在无细胞系统中使用过,但它的 pH 依赖性尚未得到很好的描述,限制了它作为丙酮酸汇的用途。我们表明,改进的质子计量允许更好地预测 pH 变化,并且主动 pH 控制允许从乙酰基酮获得高达 2.1 M(189 g/L)的 2,3-丁二醇和从丙酮酸获得 1.6 M(144 g/L)的 2,3-丁二醇。改进的质子计量提供了一个关键的见解,即阻止 CO 从系统中逸出在很大程度上消除了对主动 pH 控制的需求,极大地简化了我们的实验设置。然后,我们使用该级联反应来了解在 ,一种具有纤维素生物燃料生产潜在应用的生物体中产物形成的限制。我们表明,丙酮酸的命运主要由电子可用性控制,并且丙酮酸上游的反应限制了整体产物形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a679/11574923/d3404c1e307c/sb4c00405_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验