Suppr超能文献

基因组规模资源分配模型的现状、挑战与机遇:数学视角

Current State, Challenges, and Opportunities in Genome-Scale Resource Allocation Models: A Mathematical Perspective.

作者信息

Schroeder Wheaton L, Suthers Patrick F, Willis Thomas C, Mooney Eric J, Maranas Costas D

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

The Center for Bioenergy Innovation, Oak Ridge, TN 37830, USA.

出版信息

Metabolites. 2024 Jun 28;14(7):365. doi: 10.3390/metabo14070365.

Abstract

Stoichiometric genome-scale metabolic models (generally abbreviated GSM, GSMM, or GEM) have had many applications in exploring phenotypes and guiding metabolic engineering interventions. Nevertheless, these models and predictions thereof can become limited as they do not directly account for protein cost, enzyme kinetics, and cell surface or volume proteome limitations. Lack of such mechanistic detail could lead to overly optimistic predictions and engineered strains. Initial efforts to correct these deficiencies were by the application of precursor tools for GSMs, such as flux balance analysis with molecular crowding. In the past decade, several frameworks have been introduced to incorporate proteome-related limitations using a genome-scale stoichiometric model as the reconstruction basis, which herein are called resource allocation models (RAMs). This review provides a broad overview of representative or commonly used existing RAM frameworks. This review discusses increasingly complex models, beginning with stoichiometric models to precursor to RAM frameworks to existing RAM frameworks. RAM frameworks are broadly divided into two categories: coarse-grained and fine-grained, with different strengths and challenges. Discussion includes pinpointing their utility, data needs, highlighting framework strengths and limitations, and appropriateness to various research endeavors, largely through contrasting their mathematical frameworks. Finally, promising future applications of RAMs are discussed.

摘要

化学计量基因组规模代谢模型(通常缩写为GSM、GSMM或GEM)在探索表型和指导代谢工程干预方面有许多应用。然而,这些模型及其预测可能会受到限制,因为它们没有直接考虑蛋白质成本、酶动力学以及细胞表面或体积蛋白质组的限制。缺乏这种机制细节可能会导致过于乐观的预测和工程菌株。最初纠正这些缺陷的努力是通过应用GSM的前体工具,如具有分子拥挤效应的通量平衡分析。在过去十年中,已经引入了几个框架,以基因组规模化学计量模型作为重建基础来纳入与蛋白质组相关的限制,本文中将其称为资源分配模型(RAM)。本综述广泛概述了具有代表性或常用的现有RAM框架。本综述讨论了越来越复杂的模型,从化学计量模型到前体再到RAM框架以及现有的RAM框架。RAM框架大致分为两类:粗粒度和细粒度,各有不同的优势和挑战。讨论包括确定它们的实用性、数据需求,突出框架的优势和局限性,以及对各种研究工作的适用性,主要是通过对比它们的数学框架。最后,讨论了RAM有前景的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f71a/11278519/63125dbe8370/metabolites-14-00365-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验