Suppr超能文献

机器学习模型在肾移植中的前景与现实。

The promise and reality of machine-learning models in kidney transplantation.

机构信息

Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

出版信息

Kidney Int. 2023 May;103(5):835-836. doi: 10.1016/j.kint.2023.02.008.

Abstract

There have been numerous advances in statistical methods and computing technologies over the past decades, including the use of machine-learning models. In the current study, Truchot et al. rigorously evaluated the performance of different machine-learning models compared with traditional Cox proportional hazard models. Results of the study indicated that a Cox model had equivalent or superior performance than machine-learning models and can be relied on for predicting graft survival in kidney transplantation.

摘要

在过去的几十年中,统计方法和计算技术取得了众多进展,包括使用机器学习模型。在本研究中,Truchot 等人严格评估了与传统 Cox 比例风险模型相比,不同机器学习模型的性能。研究结果表明,Cox 模型的性能与机器学习模型相当或更优,可用于预测肾移植中的移植物存活率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验