Suppr超能文献

基于数据驱动模型预测流分离区尺寸的应用。

Application of data-driven models to predict the dimensions of flow separation zone.

机构信息

Faculty of Engineering, Dept. of Civil Engineering, Hasan Kalyoncu University, Şahinbey, Gaziantep, 27110, Turkey.

Faculty of Engineering, Dept. of Civil Engineering, Istanbul Gedik Univ, Istanbul, 34876, Turkey.

出版信息

Environ Sci Pollut Res Int. 2023 May;30(24):65572-65586. doi: 10.1007/s11356-023-27024-y. Epub 2023 Apr 22.

Abstract

In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes' shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly's array for the vanes' arrangement along with different main controlling factors such as distances of vanes along the flow (δ), degree of curvature (β), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, β = 34°, and δ = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman's rho and Pearson's coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0-10%.

摘要

在这项研究中,通过 192 个测量数据集评估了淹没多叶片系统对流动分离区(DFSZ)尺寸的影响。叶片的形状由两段组成,弯曲和平板,它们位于主通道与侧向进水通道的连接处,角度为 55°。在这个方向上,采用了蝴蝶式排列的叶片布置方式,并结合了不同的主要控制因素,如叶片沿流距(δ)、曲率(β)和攻角(θ)。通过拍摄照片和使用 AutoCAD 和 SURFER 软件,计算出最大相对长度和宽度。根据实验测量结果,与受控测试(无淹没叶片)相比,DFSZ 的最大百分比减小值在 θ=30°、β=34°和 δ=10cm 时分别为 78%和 76%。此外,为了通过 Spearman's rho 和 Pearson's coefficient 过程实现的操作无量纲变量来预测 DFSZ,还开发了几种数据驱动模型,即基因表达编程(GEP)、支持向量回归(SVR)和带有蚁群优化算法(ACO)的稳健混合 SVR(即混合 SVR-ACO 模型)。根据统计指标、模型分级过程、散点图和混合 SVR(RBF)-ACO 模型,最佳和最精确的模型是预测最大相对长度和宽度的模型,总等级(TG)分别为 6.75 和 5.8。在 GEP 的最优方案下,生成的 DFSZ 代数公式与相应的测量结果进行了比较,结果在 0-10%范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeff/10121428/5737f5ba28a3/11356_2023_27024_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验