Suppr超能文献

基于蚁群算法的耦合在线序贯极限学习机模型在小麦产量预测中的应用

Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction.

机构信息

Deakin-SWU Joint Research Centre on Big Data, School of Information Technology, Deakin University, Geelong, VIC, 3125, Australia.

School of Agricultural, Computational and Environmental Sciences, International Centre for Applied Climate Sciences, Institute of Agriculture and Environment, University of Southern Queensland, Springfield, QLD, 4300, Australia.

出版信息

Sci Rep. 2022 Mar 31;12(1):5488. doi: 10.1038/s41598-022-09482-5.

Abstract

Inadequate agricultural planning compounded by inaccurate predictions results in an inflated local market rate and prompts higher importation of wheat. To tackle this problem, this research has designed two-phase universal machine learning (ML) model to predict wheat yield (W), utilizing 27 agricultural counties' data within the Agro-ecological zone. The universal model, online sequential extreme learning machines coupled with ant colony optimization (ACO-OSELM) is developed, by incorporating the significant annual yield data lagged at (t - 1) as the model's predictor to generate future yield at 6 test stations. In the first phase, ACO is adopted to search for suitable, statistically relevant data stations for model training, and the corresponding test station by virtue of a feature selection strategy. An annual wheat yield time-series input dataset is constructed utilizing data from each selected training station (1981-2013) and applied against 6 test stations (with each case modelled with 26 station data as the input) to evaluate the hybrid ACO-OSELM model. The partial autocorrelation function is implemented to deduce statistically significant lagged data, and OSELM is applied to generate W. The two-phase hybrid ACO-OSELM model is tested within the 6 agricultural districts (represented as stations) of Punjab province, Pakistan and the results are benchmarked with extreme learning machine (ELM) and random forest (RF) integrated with ACO (i.e., hybrid ACO-ELM and hybrid ACO-RF models, respectively). The performance of the ACO-OSELM model was proven to be good in comparison to ACO-ELM and ACO-RF models. The hybrid ACO-OSELM model revealed its potential to be implemented as a decision-making system for crop yield prediction in areas where a significant association with the historical agricultural crop is well-established.

摘要

农业规划不足加上预测不准确,导致当地市场价格虚高,并促使更多的小麦进口。为了解决这个问题,本研究设计了一个两阶段通用机器学习 (ML) 模型,利用农业生态区 27 个农业县的数据来预测小麦产量 (W)。通用模型是在线序贯极端学习机与蚁群优化 (ACO-OSELM) 的结合,通过将显著的年度产量数据滞后 (t-1) 作为模型的预测因子,在 6 个测试站生成未来产量。在第一阶段,采用蚁群算法 (ACO) 搜索适合的、具有统计相关性的数据站进行模型训练,并根据特征选择策略找到相应的测试站。利用每个选定的训练站的 1981-2013 年的数据构建一个年度小麦产量时间序列输入数据集,并将其应用于 6 个测试站(每个案例都使用 26 个站的数据作为输入),以评估混合 ACO-OSELM 模型。实施偏自相关函数以推断具有统计意义的滞后数据,并应用 OSELM 生成 W。两阶段混合 ACO-OSELM 模型在巴基斯坦旁遮普省的 6 个农业区(代表为站)进行测试,并与极端学习机 (ELM) 和随机森林 (RF) 进行比较,这两种模型都与 ACO 相结合(即混合 ACO-ELM 和混合 ACO-RF 模型)。与 ACO-ELM 和 ACO-RF 模型相比,ACO-OSELM 模型的性能被证明是良好的。混合 ACO-OSELM 模型显示出在与历史农业作物有明显关联的地区实施作物产量预测决策系统的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2a1/8971467/eba58d757ac4/41598_2022_9482_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验