文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估噬菌体:宏基因组测序数据中噬菌体鉴定工具的基准测试。

Gauge your phage: benchmarking of bacteriophage identification tools in metagenomic sequencing data.

机构信息

Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.

Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.

出版信息

Microbiome. 2023 Apr 21;11(1):84. doi: 10.1186/s40168-023-01533-x.


DOI:10.1186/s40168-023-01533-x
PMID:37085924
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10120246/
Abstract

BACKGROUND: The prediction of bacteriophage sequences in metagenomic datasets has become a topic of considerable interest, leading to the development of many novel bioinformatic tools. A comparative analysis of ten state-of-the-art phage identification tools was performed to inform their usage in microbiome research. METHODS: Artificial contigs generated from complete RefSeq genomes representing phages, plasmids, and chromosomes, and a previously sequenced mock community containing four phage species, were used to evaluate the precision, recall, and F1 scores of the tools. We also generated a dataset of randomly shuffled sequences to quantify false-positive calls. In addition, a set of previously simulated viromes was used to assess diversity bias in each tool's output. RESULTS: VIBRANT and VirSorter2 achieved the highest F1 scores (0.93) in the RefSeq artificial contigs dataset, with several other tools also performing well. Kraken2 had the highest F1 score (0.86) in the mock community benchmark by a large margin (0.3 higher than DeepVirFinder in second place), mainly due to its high precision (0.96). Generally, k-mer-based tools performed better than reference similarity tools and gene-based methods. Several tools, most notably PPR-Meta, called a high number of false positives in the randomly shuffled sequences. When analysing the diversity of the genomes that each tool predicted from a virome set, most tools produced a viral genome set that had similar alpha- and beta-diversity patterns to the original population, with Seeker being a notable exception. CONCLUSIONS: This study provides key metrics used to assess performance of phage detection tools, offers a framework for further comparison of additional viral discovery tools, and discusses optimal strategies for using these tools. We highlight that the choice of tool for identification of phages in metagenomic datasets, as well as their parameters, can bias the results and provide pointers for different use case scenarios. We have also made our benchmarking dataset available for download in order to facilitate future comparisons of phage identification tools. Video Abstract.

摘要

背景:在宏基因组数据集预测噬菌体序列已成为一个备受关注的话题,由此开发了许多新型生物信息学工具。我们对十种最先进的噬菌体识别工具进行了综合评估,以指导它们在微生物组研究中的应用。

方法:我们使用人工合成的 contigs 对 RefSeq 全基因组进行模拟,这些 contigs 分别代表噬菌体、质粒和染色体,同时还使用了之前测序的模拟群落,其中包含四种噬菌体物种。通过评估这些工具的精确率、召回率和 F1 分数,来评估它们的性能。我们还生成了一组随机打乱的序列数据集,以量化假阳性预测。此外,我们还使用了一组之前模拟的病毒组来评估每个工具输出的多样性偏差。

结果:在 RefSeq 人工 contigs 数据集上,VIBRANT 和 VirSorter2 取得了最高的 F1 分数(0.93),还有其他几个工具也表现出色。Kraken2 在模拟群落基准测试中以 0.3 的巨大优势取得了最高的 F1 分数(0.86,比第二名 DeepVirFinder 高出 0.3),主要是因为它的精确率高(0.96)。一般来说,基于 k-mer 的工具比基于参考相似性的工具和基于基因的方法表现要好。有几个工具,特别是 PPR-Meta,在随机打乱的序列中预测到了大量的假阳性。当分析每个工具从病毒组中预测到的基因组多样性时,大多数工具生成的病毒基因组集与原始种群具有相似的 alpha 和 beta 多样性模式,Seeker 是一个明显的例外。

结论:本研究提供了评估噬菌体检测工具性能的关键指标,为进一步比较其他病毒发现工具提供了框架,并讨论了使用这些工具的最佳策略。我们强调,在宏基因组数据集中识别噬菌体的工具选择及其参数可能会对结果产生偏差,并为不同的用例场景提供了指导。我们还提供了基准测试数据集的下载,以方便未来对噬菌体识别工具的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/7f5e7edd5719/40168_2023_1533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/f88224ea21a7/40168_2023_1533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/0b9f42151ea6/40168_2023_1533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/868cfa2c3ea1/40168_2023_1533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/5d56a15c3fa0/40168_2023_1533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/7f5e7edd5719/40168_2023_1533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/f88224ea21a7/40168_2023_1533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/0b9f42151ea6/40168_2023_1533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/868cfa2c3ea1/40168_2023_1533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/5d56a15c3fa0/40168_2023_1533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d0/10120246/7f5e7edd5719/40168_2023_1533_Fig5_HTML.jpg

相似文献

[1]
Gauge your phage: benchmarking of bacteriophage identification tools in metagenomic sequencing data.

Microbiome. 2023-4-21

[2]
Simulation study and comparative evaluation of viral contiguous sequence identification tools.

BMC Bioinformatics. 2021-6-16

[3]
Accurate identification of bacteriophages from metagenomic data using Transformer.

Brief Bioinform. 2022-7-18

[4]
Evaluation of computational phage detection tools for metagenomic datasets.

Front Microbiol. 2023-1-25

[5]
VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.

Microbiome. 2017-7-6

[6]
Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil.

Microbiome. 2020-2-11

[7]
Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets.

BMC Bioinformatics. 2020-7-28

[8]
Seeker: alignment-free identification of bacteriophage genomes by deep learning.

Nucleic Acids Res. 2020-12-2

[9]
HVSeeker: a deep-learning-based method for identification of host and viral DNA sequences.

Gigascience. 2025-1-6

[10]
PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning.

Gigascience. 2019-6-1

引用本文的文献

[1]
Phage quest: a beginner's guide to explore viral diversity in the prokaryotic world.

Brief Bioinform. 2025-8-31

[2]
Genomic insights into bacteriophages: a new frontier in AMR detection and phage therapy.

Brief Funct Genomics. 2025-1-15

[3]
Negativeome characterization and decontamination in early-life virome studies.

Nat Commun. 2025-7-4

[4]
Biases and complementarity in gut viromes obtained from bulk and virus-like particle-enriched metagenomic sequencing.

Microbiol Spectr. 2025-7-2

[5]
VirNucPro: an identifier for the identification of viral short sequences using six-frame translation and large language models.

Brief Bioinform. 2025-5-1

[6]
Insights into diversity, host-range, and temporal stability of Bacteroides and Phocaeicola prophages.

BMC Microbiol. 2025-2-26

[7]
A novel framework for phage-host prediction via logical probability theory and network sparsification.

Brief Bioinform. 2024-11-22

[8]
Predicting phage-host interactions via feature augmentation and regional graph convolution.

Brief Bioinform. 2024-11-22

[9]
VirRep: a hybrid language representation learning framework for identifying viruses from human gut metagenomes.

Genome Biol. 2024-7-4

[10]
Tools and methodology to phage discovery in freshwater environments.

Front Microbiol. 2024-5-31

本文引用的文献

[1]
Pharokka: a fast scalable bacteriophage annotation tool.

Bioinformatics. 2023-1-1

[2]
What the Phage: a scalable workflow for the identification and analysis of phage sequences.

Gigascience. 2022-11-18

[3]
Identifying viruses from metagenomic data using deep learning.

Quant Biol. 2020-3

[4]
The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment.

Microbiology (Reading). 1997-6

[5]
Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features.

Nat Commun. 2021-2-16

[6]
Rapid discovery of novel prophages using biological feature engineering and machine learning.

NAR Genom Bioinform. 2021-1-6

[7]
VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses.

Microbiome. 2021-2-1

[8]
clinker & clustermap.js: automatic generation of gene cluster comparison figures.

Bioinformatics. 2021-8-25

[9]
Seeker: alignment-free identification of bacteriophage genomes by deep learning.

Nucleic Acids Res. 2020-12-2

[10]
Mini-Metagenomics and Nucleotide Composition Aid the Identification and Host Association of Novel Bacteriophage Sequences.

Adv Biosyst. 2019-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索