Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Korea.
Korean Academy of Oral and Maxillofacial Implantology (KAOMI) Implant Research Institute, Seoul, Korea.
J Dent Res. 2023 Jul;102(7):727-733. doi: 10.1177/00220345231160750. Epub 2023 Apr 21.
This study aimed to evaluate the efficacy of deep learning (DL) for the identification and classification of various types of dental implant systems (DISs) using a large-scale multicenter data set. We also compared the classification accuracy of DL and dental professionals. The data set, which was collected from 5 college dental hospitals and 10 private dental clinics, contained 37,442 (24.8%) periapical and 113,291 (75.2%) panoramic radiographic images and consisted of a total of 10 manufacturers and 25 different types of DISs. The classification accuracy of DL was evaluated using a pretrained and modified ResNet-50 architecture, and comparison of accuracy performance and reading time between DL and dental professionals was conducted using a self-reported questionnaire. When comparing the accuracy performance for classification of DISs, DL (accuracy: 82.0%; 95% confidence interval [CI], 75.9%-87.0%) outperformed most of the participants (mean accuracy: 23.5% ± 18.5%; 95% CI, 18.5%-32.3%), including dentists specialized (mean accuracy: 43.3% ± 20.4%; 95% CI, 12.7%-56.2%) and not specialized (mean accuracy: 16.8% ± 9.0%; 95% CI, 12.8%-20.9%) in implantology. In addition, DL tends to require lesser reading and classification time (4.5 min) than dentists who specialized (75.6 ± 31.0 min; 95% CI, 13.1-78.4) and did not specialize (91.3 ± 38.3 min; 95% CI, 74.1-108.6) in implantology. DL achieved reliable outcomes in the identification and classification of various types of DISs, and the classification accuracy performance of DL was significantly superior to that of specialized or nonspecialized dental professionals. DL as a decision support aid can be successfully used for the identification and classification of DISs encountered in clinical practice.
本研究旨在利用大规模多中心数据集评估深度学习(DL)在识别和分类各种类型牙科植入系统(DIS)中的功效。我们还比较了 DL 和牙科专业人员的分类准确性。该数据集来自 5 所大学牙科医院和 10 家私人牙科诊所,包含 37442 张(24.8%)根尖和 113291 张(75.2%)全景放射图像,共有 10 家制造商和 25 种不同类型的 DIS。使用预训练和修改后的 ResNet-50 架构评估 DL 的分类准确性,并使用自我报告的问卷比较 DL 和牙科专业人员的准确性表现和阅读时间。在比较 DIS 分类的准确性表现时,DL(准确性:82.0%;95%置信区间[CI],75.9%-87.0%)优于大多数参与者(平均准确性:23.5%±18.5%;95%CI,18.5%-32.3%),包括专门从事种植牙的牙医(平均准确性:43.3%±20.4%;95%CI,12.7%-56.2%)和非专门从事种植牙的牙医(平均准确性:16.8%±9.0%;95%CI,12.8%-20.9%)。此外,DL 倾向于需要较少的阅读和分类时间(4.5 分钟),而专门从事种植牙的牙医需要的时间分别为 75.6±31.0 分钟(95%CI,13.1-78.4)和非专门从事种植牙的牙医需要的时间为 91.3±38.3 分钟(95%CI,74.1-108.6)。DL 在识别和分类各种类型的 DIS 方面取得了可靠的结果,DL 的分类准确性表现明显优于专门从事种植牙的牙医或非专门从事种植牙的牙医。DL 作为决策支持辅助工具,可成功用于识别和分类临床实践中遇到的 DIS。
J Periodontal Implant Sci. 2022-6
Biomolecules. 2020-7-1
J Stomatol Oral Maxillofac Surg. 2024-9
J Indian Soc Periodontol. 2024
J Oral Biol Craniofac Res. 2025
J Transl Med. 2024-10-14