文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用大规模多中心数据集识别牙科种植体系统。

Identification of Dental Implant Systems Using a Large-Scale Multicenter Data Set.

机构信息

Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Korea.

Korean Academy of Oral and Maxillofacial Implantology (KAOMI) Implant Research Institute, Seoul, Korea.

出版信息

J Dent Res. 2023 Jul;102(7):727-733. doi: 10.1177/00220345231160750. Epub 2023 Apr 21.


DOI:10.1177/00220345231160750
PMID:37085970
Abstract

This study aimed to evaluate the efficacy of deep learning (DL) for the identification and classification of various types of dental implant systems (DISs) using a large-scale multicenter data set. We also compared the classification accuracy of DL and dental professionals. The data set, which was collected from 5 college dental hospitals and 10 private dental clinics, contained 37,442 (24.8%) periapical and 113,291 (75.2%) panoramic radiographic images and consisted of a total of 10 manufacturers and 25 different types of DISs. The classification accuracy of DL was evaluated using a pretrained and modified ResNet-50 architecture, and comparison of accuracy performance and reading time between DL and dental professionals was conducted using a self-reported questionnaire. When comparing the accuracy performance for classification of DISs, DL (accuracy: 82.0%; 95% confidence interval [CI], 75.9%-87.0%) outperformed most of the participants (mean accuracy: 23.5% ± 18.5%; 95% CI, 18.5%-32.3%), including dentists specialized (mean accuracy: 43.3% ± 20.4%; 95% CI, 12.7%-56.2%) and not specialized (mean accuracy: 16.8% ± 9.0%; 95% CI, 12.8%-20.9%) in implantology. In addition, DL tends to require lesser reading and classification time (4.5 min) than dentists who specialized (75.6 ± 31.0 min; 95% CI, 13.1-78.4) and did not specialize (91.3 ± 38.3 min; 95% CI, 74.1-108.6) in implantology. DL achieved reliable outcomes in the identification and classification of various types of DISs, and the classification accuracy performance of DL was significantly superior to that of specialized or nonspecialized dental professionals. DL as a decision support aid can be successfully used for the identification and classification of DISs encountered in clinical practice.

摘要

本研究旨在利用大规模多中心数据集评估深度学习(DL)在识别和分类各种类型牙科植入系统(DIS)中的功效。我们还比较了 DL 和牙科专业人员的分类准确性。该数据集来自 5 所大学牙科医院和 10 家私人牙科诊所,包含 37442 张(24.8%)根尖和 113291 张(75.2%)全景放射图像,共有 10 家制造商和 25 种不同类型的 DIS。使用预训练和修改后的 ResNet-50 架构评估 DL 的分类准确性,并使用自我报告的问卷比较 DL 和牙科专业人员的准确性表现和阅读时间。在比较 DIS 分类的准确性表现时,DL(准确性:82.0%;95%置信区间[CI],75.9%-87.0%)优于大多数参与者(平均准确性:23.5%±18.5%;95%CI,18.5%-32.3%),包括专门从事种植牙的牙医(平均准确性:43.3%±20.4%;95%CI,12.7%-56.2%)和非专门从事种植牙的牙医(平均准确性:16.8%±9.0%;95%CI,12.8%-20.9%)。此外,DL 倾向于需要较少的阅读和分类时间(4.5 分钟),而专门从事种植牙的牙医需要的时间分别为 75.6±31.0 分钟(95%CI,13.1-78.4)和非专门从事种植牙的牙医需要的时间为 91.3±38.3 分钟(95%CI,74.1-108.6)。DL 在识别和分类各种类型的 DIS 方面取得了可靠的结果,DL 的分类准确性表现明显优于专门从事种植牙的牙医或非专门从事种植牙的牙医。DL 作为决策支持辅助工具,可成功用于识别和分类临床实践中遇到的 DIS。

相似文献

[1]
Identification of Dental Implant Systems Using a Large-Scale Multicenter Data Set.

J Dent Res. 2023-7

[2]
Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency.

J Periodontal Implant Sci. 2022-6

[3]
Automated deep learning for classification of dental implant radiographs using a large multi-center dataset.

Sci Rep. 2023-3-24

[4]
Deep-learning performance in identifying and classifying dental implant systems from dental imaging: a systematic review and meta-analysis.

J Periodontal Implant Sci. 2024-2

[5]
Identification of dental implant systems from low-quality and distorted dental radiographs using AI trained on a large multi-center dataset.

Sci Rep. 2024-6-1

[6]
A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study.

Diagnostics (Basel). 2020-11-7

[7]
Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study.

Medicine (Baltimore). 2020-6-26

[8]
Deep Neural Networks for Dental Implant System Classification.

Biomolecules. 2020-7-1

[9]
A robust deep learning model for the classification of dental implant brands.

J Stomatol Oral Maxillofac Surg. 2024-9

[10]
Multi-Task Deep Learning Model for Classification of Dental Implant Brand and Treatment Stage Using Dental Panoramic Radiograph Images.

Biomolecules. 2021-5-30

引用本文的文献

[1]
Assessment of the Diagnostic Accuracy of Artificial Intelligence Software in Identifying Common Periodontal and Restorative Dental Conditions (Marginal Bone Loss, Periapical Lesion, Crown, Restoration, Dental Caries) in Intraoral Periapical Radiographs.

Diagnostics (Basel). 2025-6-4

[2]
Applications of Artificial Intelligence (AI) for Diagnosis of Periodontal/Peri-Implant Diseases: A Narrative Review.

J Oral Rehabil. 2025-8

[3]
Deep Learning-Assisted Diagnostic System: Implant Brand Detection Using Improved IB-YOLOv10 in Periapical Radiographs.

Diagnostics (Basel). 2025-5-8

[4]
Artificial intelligence - The future of periodontics and implant dentistry?

J Indian Soc Periodontol. 2024

[5]
Advanced deep learning techniques for recognition of dental implants.

J Oral Biol Craniofac Res. 2025

[6]
LMCD-OR: a large-scale, multilevel categorized diagnostic dataset for oral radiography.

J Transl Med. 2024-10-14

[7]
Two-step deep learning models for detection and identification of the manufacturers and types of dental implants on panoramic radiographs.

Odontology. 2025-4

[8]
Identification of dental implant systems from low-quality and distorted dental radiographs using AI trained on a large multi-center dataset.

Sci Rep. 2024-6-1

[9]
Deep learning to assess bone quality from panoramic radiographs: the feasibility of clinical application through comparison with an implant surgeon and cone-beam computed tomography.

J Periodontal Implant Sci. 2024-10

[10]
Accuracy of Artificial Intelligence Models in Dental Implant Fixture Identification and Classification from Radiographs: A Systematic Review.

Diagnostics (Basel). 2024-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索