Suppr超能文献

基于3D打印多尺度分层设计的太阳能界面蒸发与除冰

Solar-Powered Interfacial Evaporation and Deicing Based on a 3D-Printed Multiscale Hierarchical Design.

作者信息

Li Na, Shao Ke, He Jintao, Wang Shuxue, Li Shuai, Wu Xiaochun, Li Jingjing, Guo Cui, Yu Liangmin, Murto Petri, Chen Junwu, Xu Xiaofeng

机构信息

College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.

College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, P. R. China.

出版信息

Small. 2023 Aug;19(33):e2301474. doi: 10.1002/smll.202301474. Epub 2023 Apr 22.

Abstract

Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m h in calm air and 25.3 kg m h at a gentle breeze of 2 m s are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.

摘要

太阳能界面加热已成为一种可持续技术,可用于碳足迹最小的混合应用。气凝胶、水凝胶和海绵/泡沫是最先进的光热材料的主要组成部分。然而,这些传统的三维(3D)结构及相关制造技术本质上无法使重要的性能增强策略最大化,并且该技术仍面临若干性能障碍。在此,基于复合光热油墨和油墨挤出3D打印技术,开发出了整体式、自立式且耐用的气凝胶基质,实现了一体化界面蒸汽发生器(SGs)。多尺度分级结构的快速成型协同降低了蒸发所需的能量,扩大了实际蒸发面积,产生了大量环境能量输入,并改善了质量流。在1个太阳光照强度下,在平静空气中水蒸发速率高达3.74 kg m⁻² h⁻¹,在2 m s微风条件下为25.3 kg m⁻² h⁻¹,跻身性能最佳的太阳能界面SGs之列。3D打印微通道和疏水改性赋予了气凝胶憎冰表面,从而实现了冰滴的自推进和快速去除。这项工作为分级光热材料的合理制造提供了思路,不仅突破了太阳能界面蒸发和清洁水生产的限制,还发现了光热界面除冰的新功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验