Beyar R, Sideman S
Circ Res. 1986 May;58(5):664-77. doi: 10.1161/01.res.58.5.664.
The complex interactions between left ventricular mechanics and the oxygen demand is studied by relating the left ventricular transmural oxygen demand to the myocardial structural and dynamic characteristics. The study utilizes a recent model of left ventricular contraction, which is based on a nested shell spheroidal geometry, a fan-like fibrous structure, the twisting motion of the left ventricle over its long axis, a transmural electrical activation propagation and the basic laws of sarcomere dynamics. The local "axial" stress (in the direction of the fibers) and the instantaneous sarcomere length are used to calculate the spatial distribution of the intramural oxygen demand per beat Vo2(y), where y is the distance from the endocardium. The normalized local sarcomere stress-length area SLAn(y) is related linearly to Vo2(y) by: Vo2(y) = K1 X SLAn(y) + K2, where K1 and K2 are constants. The calculations show a transmural metabolic gradient which is characterized by higher values of Vo2(y) in the endocardial layers than in the epicardial layers. Shorter endocardial sarcomeres and the twisting motion of the left ventricle around the long axis decrease the metabolic gradient across the wall, while a slow transmural electrical propagation wave as well as a wider angle of distribution of the fan-like fiber architecture increases the transmural metabolic gradient. Integration of the local oxygen demand across the left ventricular wall yields global values in agreement with those based on Suga's pressure-volume area approach. The model thus provides a qualitative and quantitative tool to assess the relation of the local and global oxygen demand to the complex left ventricular structure, fiber mechanics, and the dynamics of contraction.
通过将左心室透壁需氧量与心肌结构和动态特征相关联,研究了左心室力学与需氧量之间的复杂相互作用。该研究采用了一种最新的左心室收缩模型,该模型基于嵌套壳球体几何形状、扇形纤维结构、左心室绕其长轴的扭转运动、透壁电激活传播以及肌节动力学的基本定律。局部“轴向”应力(沿纤维方向)和瞬时肌节长度用于计算每搏透壁需氧量Vo2(y)的空间分布,其中y是距心内膜的距离。归一化的局部肌节应力-长度面积SLAn(y)与Vo2(y)呈线性关系:Vo2(y)=K1×SLAn(y)+K2,其中K1和K2为常数。计算结果显示了一种透壁代谢梯度,其特征是心内膜层的Vo2(y)值高于心外膜层。较短的心内膜肌节和左心室绕长轴的扭转运动会降低跨壁的代谢梯度,而缓慢的透壁电传播波以及扇形纤维结构更宽的分布角度会增加透壁代谢梯度。对左心室壁局部需氧量的积分得出的全局值与基于Suga压力-容积面积法得出的结果一致。因此,该模型提供了一种定性和定量工具,用于评估局部和全局需氧量与复杂的左心室结构、纤维力学和收缩动力学之间的关系。