Beyar R, Sideman S
Circ Res. 1984 Sep;55(3):358-75. doi: 10.1161/01.res.55.3.358.
A model of the left ventricle which combines a spheroidal geometry with a spatial fiber angle distribution is presented. The mechanics of each muscle fiber is described by its passive stress-strain relationship, active stress-strain relationship, and an activation function (half a sinusoid) which represents the time-dependent degree of activation of the fiber. A stress-strain rate relationship which characterizes the muscle fibers is used to calculate the mechanics of left ventricular contraction during ejection. Furthermore, a radial electrical signal propagation from the endocardium to the epicardium is used here as a first approximation to the actual depolarization sequence. The model is used to describe the process of contraction throughout the systole. The different calculated parameters and indices of left ventricular function are presented and discussed for different preloading, afterloading and contractility conditions. The maximum elastance is found to be an optimal macroscale parameter of contractility, as it is completely preload and afterload independent, and is a good reflection of the active microscale sarcomere stress-strain relationship.
提出了一种将球体几何形状与空间纤维角度分布相结合的左心室模型。每条肌纤维的力学特性通过其被动应力-应变关系、主动应力-应变关系以及一个表示纤维随时间变化的激活程度的激活函数(半正弦曲线)来描述。用于表征肌纤维的应力-应变率关系被用于计算射血期间左心室收缩的力学特性。此外,这里使用从心内膜到心外膜的径向电信号传播作为实际去极化序列的一阶近似。该模型用于描述整个收缩期的收缩过程。针对不同的前负荷、后负荷和收缩性条件,给出并讨论了左心室功能的不同计算参数和指标。发现最大弹性是收缩性的一个最佳宏观参数,因为它完全独立于前负荷和后负荷,并且很好地反映了活跃的微观肌节应力-应变关系。