Beyar R, Sideman S
Ann Biomed Eng. 1986;14(6):547-62. doi: 10.1007/BF02484472.
A mathematical analysis which relates the dynamic twisting motion of the heart around its longitudinal axis to the mechanical function of the left ventricle (LV) is presented. The study thus extends our earlier model which relates the micro-scale sarcomere dynamics, the fibrous structure of the myocardium, and the electrical transmural activation wave to the global LV function. The analysis demonstrates that although the angular twisting motion of the heart moderates the sarcomere length (SL) and the strain rate distributions throughout the myocardium, the global characteristics of the LV function are almost independent of the twisting phenomenon. The endocardial sarcomeres are nevertheless subjected to higher strains and higher (negative) strain rates than the corresponding (positive) epicardial sarcomeres. Utilizing the sarcomere stress length area to predict oxygen demand, it is shown that the twisting motion of the heart produces the metabolic gradient across the LV wall. In spite of the moderating effect of the twist, a larger than normal gradient in oxygen demand is predicted for cases of concentric hypertrophy.
本文提出了一种数学分析方法,该方法将心脏围绕其纵轴的动态扭转运动与左心室(LV)的机械功能联系起来。这项研究扩展了我们之前的模型,该模型将微观尺度的肌节动力学、心肌的纤维结构以及电跨壁激活波与左心室的整体功能联系起来。分析表明,尽管心脏的角扭转运动使整个心肌中的肌节长度(SL)和应变率分布趋于缓和,但左心室功能的整体特征几乎与扭转现象无关。然而,心内膜肌节比相应的(正性)心外膜肌节承受更高的应变和更高的(负性)应变率。利用肌节应力长度面积来预测氧需求,结果表明心脏的扭转运动在左心室壁上产生了代谢梯度。尽管扭转有缓和作用,但对于同心性肥厚病例,预测其氧需求梯度大于正常情况。