Suppr超能文献

Dynamic interactions and mutual synchronization of sinoatrial node pacemaker cells. A mathematical model.

作者信息

Michaels D C, Matyas E P, Jalife J

出版信息

Circ Res. 1986 May;58(5):706-20. doi: 10.1161/01.res.58.5.706.

Abstract

Dynamic interactions and mutual entrainment of coupled sinoatrial pacemaker cells with different intrinsic frequencies were investigated using a computerized mathematical model. Transmembrane potentials were simulated using equations of individual membrane currents based on voltage clamp data for the sinoatrial node. The intrinsic frequency of a given cell was altered by applying bias hyperpolarizing current, or by changing the amount of slow inward current. Cells were coupled through simple ohmic resistances to form linear arrays of two or more cells. Simulations closely reproduced previous experimental work showing that the mutual interactions between pacemakers are mediated electrotonically and show phase dependence. Results from the present simulations provide an explanation for the ionic basis of these phase-dependent interactions. In addition, it is demonstrated that the mutual entrainment of coupled pacemakers can lead to their coordinated behavior (synchronization). Two pacemaker cells can synchronize at simple harmonic (i.e., 1:1, 2:1, etc.) or more complex ratios (3:2, 5:3, etc.), depending on the differences in intrinsic frequencies and the degree of electrical coupling between cells. Simulations using larger numbers of linearly connected cells yielded various patterns of pacemaker activity including 2:1 sinoatrial block and complex dysrhythmic activity. The overall results may be used to predict higher order interactions of thousands of cells comprising the sinus node. Under such a scheme, synchronization occurs not by the conducted influence of a dominant pacemaker cell, but by the mutual "democratic" interaction of individual pacemaker cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验