Suppr超能文献

利用光化学反射指数和机器学习估算番茄水分状况:基于近端传感器和无人机图像的评估

Estimation of tomato water status with photochemical reflectance index and machine learning: Assessment from proximal sensors and UAV imagery.

作者信息

Tang Zhehan, Jin Yufang, Brown Patrick H, Park Meerae

机构信息

Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States.

Department of Plant Sciences, University of California, Davis, Davis, CA, United States.

出版信息

Front Plant Sci. 2023 Apr 6;14:1057733. doi: 10.3389/fpls.2023.1057733. eCollection 2023.

Abstract

Tracking plant water status is a critical step towards the adaptive precision irrigation management of processing tomatoes, one of the most important specialty crops in California. The photochemical reflectance index (PRI) from proximal sensors and the high-resolution unmanned aerial vehicle (UAV) imagery provide an opportunity to monitor the crop water status efficiently. Based on data from an experimental tomato field with intensive aerial and plant-based measurements, we developed random forest machine learning regression models to estimate tomato stem water potential ( ), (using observations from proximal sensors and 12-band UAV imagery, respectively, along with weather data. The proximal sensor-based model estimation agreed well with the plant with of 0.74 and mean absolute error (MAE) of 0.63 bars. The model included PRI, normalized difference vegetation index, vapor pressure deficit, and air temperature and tracked well with the seasonal dynamics of across different plots. A separate model, built with multiple vegetation indices (VIs) from UAV imagery and weather variables, had an of 0.81 and MAE of 0.67 bars. The plant-level maps generated from UAV imagery closely represented the water status differences of plots under different irrigation treatments and also tracked well the temporal change among flights. PRI was found to be the most important VI in both the proximal sensor- and the UAV-based models, providing critical information on tomato plant water status. This study demonstrated that machine learning models can accurately estimate the water status by integrating PRI, other VIs, and weather data, and thus facilitate data-driven irrigation management for processing tomatoes.

摘要

跟踪植物水分状况是实现加工番茄自适应精准灌溉管理的关键一步,加工番茄是加利福尼亚州最重要的特色作物之一。来自近端传感器的光化学反射指数(PRI)和高分辨率无人机(UAV)图像提供了有效监测作物水分状况的机会。基于一个进行了密集空中和基于植株测量的番茄试验田的数据,我们开发了随机森林机器学习回归模型,分别使用来自近端传感器的观测数据、12波段无人机图像以及气象数据来估计番茄茎水势( )。基于近端传感器的模型估计与植株 吻合良好, 为0.74,平均绝对误差(MAE)为0.63巴。该模型包括PRI、归一化植被指数、水汽压差和气温,并能很好地跟踪不同地块 的季节动态。另一个模型是利用无人机图像中的多个植被指数(VI)和气象变量构建的, 为0.81,MAE为0.67巴。从无人机图像生成的植株水平 地图紧密反映了不同灌溉处理下地块的水分状况差异,并且也能很好地跟踪不同飞行之间的时间变化。在基于近端传感器和基于无人机的模型中,PRI被发现是最重要的植被指数,它提供了关于番茄植株水分状况的关键信息。这项研究表明,机器学习模型通过整合PRI、其他植被指数和气象数据,可以准确估计水分状况,从而促进加工番茄的数据驱动灌溉管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9838/10117946/44c305661a3b/fpls-14-1057733-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验