Suppr超能文献

用于视网膜母细胞瘤潜在治疗的血管内皮生长因子受体3(VEGFR3)抑制剂的二维、三维定量构效关系研究及对接

2D, 3D-QSAR study and docking of vascular endothelial growth factor receptor 3 (VEGFR3) inhibitors for potential treatment of retinoblastoma.

作者信息

Ren Rui, Gao Liyu, Li Guoqi, Wang Shuqiang, Zhao Yangzhong, Wang Haitong, Liu Jianwei

机构信息

Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China.

Shouguang Guangming Hospital, Shouguang, China.

出版信息

Front Pharmacol. 2023 Apr 7;14:1177282. doi: 10.3389/fphar.2023.1177282. eCollection 2023.

Abstract

Retinoblastoma is currently the most common malignant tumor seen in newborns and children's eyes worldwide, posing a life-threatening hazard. Chemotherapy is an integral part of retinoblastoma treatment. However, the chemotherapeutic agents used in clinics often lead to drug resistance. Thus there is a need to investigate new chemotherapy-targeted agents. VEGFR3 inhibitors are anti-tumour-growth and could be used to develop novel retinoblastoma-targeted agents. To predict drug activity, discover influencing factors and design new drugs by building 2D, 3D-QSAR models. First, linear and non-linear QSAR models were built using heuristic methods and gene expression programming (GEP). The comparative molecular similarity indices analysis (COMISA) was then used to construct 3D-QSAR models through the SYBYL software. New drugs were designed by changing drug activity factors in both models, and molecular docking experiments were performed. The best linear model created using HM had an R, S, and Rcv of 0.82, 0.02, and 0.77, respectively. For the training and test sets, the best non-linear model created using GEP had correlation coefficients of 0.83 and 0.72 with mean errors of 0.02 and 0.04. The 3D model designed using SYBYL passed external validation due to its high Q (0.503), R (0.805), and F-value (76.52), as well as its low standard error of SEE value (0.172). This demonstrates the model's reliability and excellent predictive ability. Based on the molecular descriptors of the 2D model and the contour plots of the 3D model, we designed 100 new compounds using the best active compound 14 as a template. We performed activity prediction and molecular docking experiments on them, in which compound 14.d performed best regarding combined drug activity and docking ability. The non-linear model created using GEP was more stable and had a more substantial predictive power than the linear model built using the heuristic technique (HM). The compound 14.d designed in this experiment has the potential for anti-retinoblastoma treatment, which provides new design ideas and directions for retinoblastoma-targeted drugs.

摘要

视网膜母细胞瘤是目前全球新生儿和儿童眼部最常见的恶性肿瘤,对生命构成威胁。化疗是视网膜母细胞瘤治疗的重要组成部分。然而,临床使用的化疗药物常常导致耐药性。因此,有必要研究新的化疗靶向药物。血管内皮生长因子受体3(VEGFR3)抑制剂具有抗肿瘤生长的作用,可用于开发新型视网膜母细胞瘤靶向药物。通过构建二维(2D)、三维定量构效关系(3D-QSAR)模型来预测药物活性、发现影响因素并设计新药。首先,使用启发式方法和基因表达编程(GEP)构建线性和非线性QSAR模型。然后利用比较分子相似性指数分析(COMISA)通过SYBYL软件构建3D-QSAR模型。通过改变两个模型中的药物活性因素来设计新药,并进行分子对接实验。使用启发式方法(HM)创建的最佳线性模型的R、S和Rcv分别为0.82、0.02和0.77。对于训练集和测试集,使用GEP创建的最佳非线性模型的相关系数分别为0.83和0.72,平均误差分别为0.02和0.04。使用SYBYL设计的3D模型因其高Q值(0.503)、R值(0.805)和F值(76.52)以及低标准误差SEE值(0.172)而通过了外部验证。这证明了该模型的可靠性和出色的预测能力。基于2D模型的分子描述符和3D模型的等高线图,我们以最佳活性化合物14为模板设计了100种新化合物。我们对它们进行了活性预测和分子对接实验,其中化合物14.d在联合药物活性和对接能力方面表现最佳。使用GEP创建的非线性模型比使用启发式技术(HM)构建的线性模型更稳定,具有更强的预测能力。本实验设计的化合物14.d具有抗视网膜母细胞瘤治疗的潜力,为视网膜母细胞瘤靶向药物提供了新的设计思路和方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验