Suppr超能文献

新型汉防己甲素衍生物抗人肝癌的定量构效关系研究。

QSAR Research of Novel Tetrandrine Derivatives against Human Hepatocellular Carcinoma.

机构信息

Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, China.

Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, China.

出版信息

Anticancer Agents Med Chem. 2023;23(19):2146-2153. doi: 10.2174/1871520623666230831103936.

Abstract

BACKGROUND

The new tetrandrine derivative is an anti-human liver cancer cell inhibitor which can be used to design and develop anti-human-liver-cancer drugs.

OBJECTIVE

A quantitative structure-activity relationship (QSAR) model was established to predict the physical properties of new tetrandrine derivatives using their chemical structures.

METHODS

The best descriptors were selected through CODESSA software to build a multiple linear regression model. Then, gene expression programming (GEP) was used to establish a nonlinear quantitative QSAR model with descriptors to predict the activity of a series of novel tetrandrine chemotherapy drugs. The best active compound 31 was subjected to molecular docking experiments through SYBYL software with a small fragment of the protein receptor (PDB ID:2J6M).

RESULTS

Four descriptors were selected to build a multiple linear regression model with correlation coefficients R2, R2CV and S2 with the values of 0.8352, 0.7806 and 0.0119, respectively. The training and test sets with a correlation coefficient of 0.85 and 0.83 were obtained via an automatic problem-solving program (APS) using the four selected operators as parameters, with a mean error of 1.49 and 1.08. Compound 31 had a good docking ability with an overall score of 5.8892, a collision rate of -2.8004 and an extreme value of 0.9836.

CONCLUSION

The computer-constructed drug molecular model reveals the factors affecting the activity of human hepatocellular carcinoma cells, which provides directions and guidance for the development of highly effective anti-humanhepatocellular- carcinoma drugs in the future.

摘要

背景

新型汉防己甲素衍生物是一种抗人肝癌细胞抑制剂,可用于设计和开发抗人肝癌药物。

目的

用化学结构建立定量构效关系(QSAR)模型,预测新型汉防己甲素衍生物的物理性质。

方法

通过 CODESSA 软件选择最佳描述符,建立多元线性回归模型。然后,利用基因表达编程(GEP)建立非线性定量 QSAR 模型,用描述符预测一系列新型汉防己甲素化疗药物的活性。通过 SYBYL 软件对最佳活性化合物 31 与蛋白质受体的小片段(PDB ID:2J6M)进行分子对接实验。

结果

选择了四个描述符来构建一个多元线性回归模型,相关系数 R2、R2CV 和 S2 的值分别为 0.8352、0.7806 和 0.0119。通过自动问题解决程序(APS)使用四个选定的运算符作为参数,得到了训练集和测试集的相关系数分别为 0.85 和 0.83,平均误差分别为 1.49 和 1.08。化合物 31 具有良好的对接能力,总评分为 5.8892,碰撞率为-2.8004,极值为 0.9836。

结论

计算机构建的药物分子模型揭示了影响人肝癌细胞活性的因素,为今后开发高效抗人肝癌药物提供了方向和指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验