文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Eda/NF-κB信号的活跃行波控制斑马鱼皮肤附属器的形成时间和六边形模式。

An active traveling wave of Eda/NF-kB signaling controls the timing and hexagonal pattern of skin appendages in zebrafish.

作者信息

Evanitsky Maya N, Di Talia Stefano

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA.

Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710 USA.

出版信息

bioRxiv. 2023 Apr 11:2023.04.10.536269. doi: 10.1101/2023.04.10.536269.


DOI:10.1101/2023.04.10.536269
PMID:37090617
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10120683/
Abstract

Periodic patterns make up a variety of tissues, including skin appendages such as feathers and scales. Skin appendages serve important and diverse functions across vertebrates, yet the mechanisms that regulate their patterning are not fully understood. Here, we have used live imaging to investigate dynamic signals regulating the ontogeny of zebrafish scales. Scales are bony skin appendages which develop sequentially along the anterior-posterior and dorsal-ventral axes to cover the fish in a hexagonal array. We have found that scale development requires cell-cell communication and is coordinated through an active wave mechanism. Using a live transcriptional reporter, we show that a wave of Eda/NF-κB activity precedes scale initiation and is required for scale formation. Experiments decoupling the propagation of the wave from dermal placode formation and osteoblast differentiation demonstrate that the Eda/NF-kB activity wavefront times the sequential patterning of scales. Moreover, this decoupling resulted in defects in scale size and significant deviations in the hexagonal patterning of scales. Thus, our results demonstrate that a biochemical traveling wave coordinates scale initiation and proper hexagonal patterning across the fish body.

摘要

周期性模式构成了多种组织,包括羽毛和鳞片等皮肤附属器。皮肤附属器在脊椎动物中发挥着重要且多样的功能,然而调节其模式形成的机制尚未完全了解。在此,我们利用活体成像技术来研究调节斑马鱼鳞片个体发育的动态信号。鳞片是骨质皮肤附属器,它们沿着前后轴和背腹轴依次发育,以六边形阵列覆盖鱼体。我们发现鳞片发育需要细胞间通讯,并通过一种主动波机制进行协调。使用一个活体转录报告基因,我们表明Eda/NF-κB活性波在鳞片起始之前出现,并且是鳞片形成所必需的。将波的传播与真皮基板形成和成骨细胞分化解耦的实验表明,Eda/NF-κB活性波前导了鳞片的顺序模式形成。此外,这种解耦导致了鳞片大小的缺陷以及鳞片六边形模式的显著偏差。因此,我们的结果表明,一种生化行波协调了鱼体上鳞片的起始和正确的六边形模式形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/35cfc3c519b5/nihpp-2023.04.10.536269v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/9e1389fed6b9/nihpp-2023.04.10.536269v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/107f1fdf55ca/nihpp-2023.04.10.536269v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/da24aa890fbf/nihpp-2023.04.10.536269v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/35cfc3c519b5/nihpp-2023.04.10.536269v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/9e1389fed6b9/nihpp-2023.04.10.536269v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/107f1fdf55ca/nihpp-2023.04.10.536269v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/da24aa890fbf/nihpp-2023.04.10.536269v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61d/10120683/35cfc3c519b5/nihpp-2023.04.10.536269v1-f0004.jpg

相似文献

[1]
An active traveling wave of Eda/NF-kB signaling controls the timing and hexagonal pattern of skin appendages in zebrafish.

bioRxiv. 2023-4-11

[2]
An active traveling wave of Eda/NF-κB signaling controls the timing and hexagonal pattern of skin appendages in zebrafish.

Development. 2023-9-15

[3]
Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.

PLoS Genet. 2008-10-3

[4]
Turing patterning with and without a global wave.

PLoS Biol. 2019-3-25

[5]
Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development.

Elife. 2018-7-17

[6]
Expression variations in ectodysplasin-A gene (eda) may contribute to morphological divergence of scales in haplochromine cichlids.

BMC Ecol Evol. 2022-3-10

[7]
Anatomy, development and regeneration of zebrafish elasmoid scales.

Dev Biol. 2024-6

[8]
The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes.

Sci Adv. 2016-6-24

[9]
Formation of cutaneous appendages in dermo-epidermal recombinations between reptiles, birds and mammals.

Wilehm Roux Arch Dev Biol. 1975-12

[10]
Feather arrays are patterned by interacting signalling and cell density waves.

PLoS Biol. 2019-2-21

本文引用的文献

[1]
Mechanochemical Principles of Spatial and Temporal Patterns in Cells and Tissues.

Annu Rev Cell Dev Biol. 2022-10-6

[2]
Waves in Embryonic Development.

Annu Rev Biophys. 2022-5-9

[3]
Systems for intricate patterning of the vertebrate anatomy.

Philos Trans A Math Phys Eng Sci. 2021-12-27

[4]
Thyroid hormone regulates abrupt skin morphogenesis during zebrafish postembryonic development.

Dev Biol. 2021-9

[5]
Zebrafish twist2/dermo1 regulates scale shape and scale organization during skin development and regeneration.

Cells Dev. 2021-6

[6]
Control of osteoblast regeneration by a train of Erk activity waves.

Nature. 2021-2

[7]
NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration.

Dev Cell. 2019-12-19

[8]
Feather arrays are patterned by interacting signalling and cell density waves.

PLoS Biol. 2019-2-21

[9]
In Toto Imaging of Dynamic Osteoblast Behaviors in Regenerating Skeletal Bone.

Curr Biol. 2018-11-29

[10]
Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development.

Elife. 2018-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索