Suppr超能文献

全膝关节置换术后住院时间预测模型的建立与评价:中国一项单中心回顾性研究

Establishment and evaluation of a predictive model for length of hospital stay after total knee arthroplasty: A single-center retrospective study in China.

作者信息

Zhu Bo, Zhang Dejun, Sang Maocheng, Zhao Long, Wang Chaoqun, Xu Yunqiang

机构信息

Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

Front Surg. 2023 Apr 6;10:1102371. doi: 10.3389/fsurg.2023.1102371. eCollection 2023.

Abstract

BACKGROUND

Total knee arthroplasty (TKA) is the ultimate option for end-stage osteoarthritis, and the demand of this procedure are increasing every year. The length of hospital stay (LOS) greatly affects the overall cost of joint arthroplasty. The purpose of this study was to develop and validate a predictive model using perioperative data to estimate the risk of prolonged LOS in patients undergoing TKA.

METHODS

Data for 694 patients after TKA collected retrospectively in our department were analyzed by logistic regression models. Multi-variable logistic regression modeling with forward stepwise elimination was used to determine reduced parameters and establish a prediction model. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated.

RESULTS

Eight independent predictors were identified: non-medical insurance payment, Charlson Comorbidity Index (CCI) ≥ 3, body mass index (BMI) > 25.2, surgery on Monday, age > 67.5, postoperative complications, blood transfusion, and operation time > 120.5 min had a higher probability of hospitalization for ≥6 days. The model had good discrimination [area under the curve (AUC), 0.802 95% CI, 0.754-0.850]] and good calibration ( = 0.929). A decision curve analysis proved that the nomogram was clinically effective.

CONCLUSION

This study identified risk factors for prolonged hospital stay in patients after TKA. It is important to recognize all the factors that affect hospital LOS to try to maximize the use of medical resources, optimize hospital LOS and ultimately optimize the care of our patients.

摘要

背景

全膝关节置换术(TKA)是终末期骨关节炎的最终治疗选择,且该手术的需求逐年增加。住院时间(LOS)对关节置换术的总体费用有很大影响。本研究的目的是开发并验证一种使用围手术期数据来估计接受TKA患者延长住院时间风险的预测模型。

方法

对我们科室回顾性收集的694例TKA术后患者的数据进行逻辑回归模型分析。采用向前逐步消除法的多变量逻辑回归建模来确定简化参数并建立预测模型。对预测模型的辨别效能、校准效能和临床实用性进行评估。

结果

确定了8个独立预测因素:非医保支付、Charlson合并症指数(CCI)≥3、体重指数(BMI)>25.2、周一手术、年龄>67.5、术后并发症、输血以及手术时间>120.5分钟的患者住院≥6天的概率更高。该模型具有良好的辨别能力[曲线下面积(AUC),0.802;95%可信区间,0.754 - 0.850]和良好的校准(=0.929)。决策曲线分析证明该列线图具有临床有效性。

结论

本研究确定了TKA术后患者延长住院时间的危险因素。认识到所有影响住院时间的因素对于尽量最大化利用医疗资源、优化住院时间并最终优化患者护理非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad9c/10118006/081aff9d24ad/fsurg-10-1102371-g001.jpg

相似文献

2
Can machine learning models predict prolonged length of hospital stay following primary total knee arthroplasty based on a national patient cohort data?
Arch Orthop Trauma Surg. 2023 Dec;143(12):7185-7193. doi: 10.1007/s00402-023-05013-7. Epub 2023 Aug 17.
3
Artificial intelligence algorithms accurately predict prolonged length of stay following revision total knee arthroplasty.
Knee Surg Sports Traumatol Arthrosc. 2022 Aug;30(8):2556-2564. doi: 10.1007/s00167-022-06894-8. Epub 2022 Jan 31.
5
The Prevalence and Predictors of Patient Dissatisfaction 5-years Following Primary Total Knee Arthroplasty.
J Arthroplasty. 2022 Jun;37(6S):S121-S128. doi: 10.1016/j.arth.2022.02.077. Epub 2022 Feb 26.
7
Preoperative Patient Factors Affecting Length of Stay following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis.
J Arthroplasty. 2019 Sep;34(9):2124-2165.e1. doi: 10.1016/j.arth.2019.04.048. Epub 2019 May 15.

引用本文的文献

本文引用的文献

2
Prediction of 90-Day Local Complications in Patients After Total Knee Arthroplasty: A Nomogram With External Validation.
Orthop J Sports Med. 2022 Feb 23;10(2):23259671211073331. doi: 10.1177/23259671211073331. eCollection 2022 Feb.
3
Artificial intelligence algorithms accurately predict prolonged length of stay following revision total knee arthroplasty.
Knee Surg Sports Traumatol Arthrosc. 2022 Aug;30(8):2556-2564. doi: 10.1007/s00167-022-06894-8. Epub 2022 Jan 31.
7
The Main Predictors of Length of Stay After Total Knee Arthroplasty: Patient-Related or Procedure-Related Risk Factors.
J Bone Joint Surg Am. 2019 Jun 19;101(12):1093-1101. doi: 10.2106/JBJS.18.00758.
9
Rates of Total Joint Replacement in the United States: Future Projections to 2020-2040 Using the National Inpatient Sample.
J Rheumatol. 2019 Sep;46(9):1134-1140. doi: 10.3899/jrheum.170990. Epub 2019 Apr 15.
10
Impact of early mobilization on length of stay after primary total knee arthroplasty.
Ann Transl Med. 2019 Feb;7(4):69. doi: 10.21037/atm.2019.02.02.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验