Suppr超能文献

基于全国患者队列数据,机器学习模型能否预测初次全膝关节置换术后住院时间延长?

Can machine learning models predict prolonged length of hospital stay following primary total knee arthroplasty based on a national patient cohort data?

机构信息

Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Arch Orthop Trauma Surg. 2023 Dec;143(12):7185-7193. doi: 10.1007/s00402-023-05013-7. Epub 2023 Aug 17.

Abstract

INTRODUCTION

The total length of stay (LOS) is one of the biggest determinators of overall care costs associated with total knee arthroplasty (TKA). An accurate prediction of LOS could aid in optimizing discharge strategy for patients in need and diminishing healthcare expenditure. The aim of this study was to predict LOS following TKA using machine learning models developed on a national-scale patient cohort.

METHODS

The ACS-NSQIP database was queried to acquire 267,966 TKA cases from 2013 to 2020. Four machine learning models-artificial neural network (ANN), random forest, histogram-based gradient boosting, and k-nearest neighbor were trained and tested on the dataset for the prediction of prolonged LOS (LOS exceeded the 75th of all values in the cohort). The model performance was assessed by discrimination (area under the receiver operating characteristic curve [AUC]), calibration, and clinical utility.

RESULTS

ANN delivered the best performance among the four models. ANN distinguished prolonged LOS in the study cohort with an AUC of 0.71 and accurately predicted the probability of prolonged LOS for individual patients (calibration slope: 0.82; calibration intercept: 0.03; Brier score: 0.089). All models demonstrated clinical utility by generating positive net benefits in decision curve analyses. Operation time, pre-operative transfusion, pre-operative laboratory tests (hematocrit, platelet count, and white blood cell count), and BMI were the strongest predictors of prolonged LOS.

CONCLUSION

ANN demonstrated modest discrimination capacity and excellent performance in calibration and clinical utility for the prediction of prolonged LOS following TKA. Clinical application of the machine learning models has the potential to improve care coordination and discharge planning for patients at high risk of extended hospitalization after surgery. Incorporating more relevant patient factors may further increase the models' prediction strength.

摘要

简介

总住院时间(LOS)是与全膝关节置换术(TKA)相关的总医疗费用的最大决定因素之一。准确预测 LOS 可以帮助优化需要出院的患者的出院策略,并减少医疗支出。本研究的目的是使用基于全国范围内患者队列的机器学习模型来预测 TKA 后的 LOS。

方法

从 2013 年至 2020 年,ACS-NSQIP 数据库被查询以获取 267966 例 TKA 病例。在数据集上训练和测试了四种机器学习模型——人工神经网络(ANN)、随机森林、基于直方图的梯度提升和 K 最近邻,以预测延长的 LOS(LOS 超过队列中所有值的 75 分位数)。通过判别(接受者操作特征曲线下的面积 [AUC])、校准和临床实用性评估模型性能。

结果

ANN 在四种模型中表现最好。ANN 以 AUC 为 0.71 区分了研究队列中的延长 LOS,并准确预测了个体患者延长 LOS 的概率(校准斜率:0.82;校准截距:0.03;Brier 评分:0.089)。所有模型在决策曲线分析中产生正净收益,证明具有临床实用性。手术时间、术前输血、术前实验室检查(红细胞压积、血小板计数和白细胞计数)和 BMI 是预测 TKA 后延长 LOS 的最强预测因子。

结论

ANN 对 TKA 后延长 LOS 的预测具有中等的判别能力和出色的校准性能和临床实用性。机器学习模型的临床应用有可能改善手术后住院时间延长的高危患者的护理协调和出院计划。纳入更多相关患者因素可能会进一步提高模型的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验