Suppr超能文献

蜜蜂翅膀为改善在医疗保健和工业中的应用提供了抗生物污染和抗菌的线索。

Honeybee wings hold antibiofouling and antimicrobial clues for improved applications in health care and industries.

作者信息

Ewunkem Akamu J, Beard A'lyiha F, Justice Brittany L, Peoples Sabrina L, Meixner Jeffery A, Kemper Watson, Iloghalu Uchenna B

机构信息

Department of Biological Sciences, Winston Salem State University, Winston-Salem, North Carolina, USA.

Department of Clinical Sciences, Winston Salem State University, Winston-Salem State, North Carolina, USA.

出版信息

AIMS Microbiol. 2023 Apr 3;9(2):332-345. doi: 10.3934/microbiol.2023018. eCollection 2023.

Abstract

Natural surfaces with remarkable properties and functionality have become the focus of intense research. Heretofore, the natural antimicrobial properties of insect wings have inspired research into their applications. The wings of cicadas, butterflies, dragonflies, and damselflies have evolved phenomenal anti-biofouling and antimicrobial properties. These wings are covered by periodic topography ranging from highly ordered hexagonal arrays of nanopillars to intricate "Christmas-tree" like structures with the ability to kill microbes by physically rupturing the cell membrane. In contrast, the topography of honeybee wings has received less attention. The role topography plays in antibiofouling, and antimicrobial activity of honeybee wings has never been investigated. Here, through antimicrobial and electron microscopy studies, we showed that pristine honeybee wings displayed no microbes on the wing surface. Also, the wings displayed antimicrobial properties that disrupt microbial cells and inhibit their growth. The antimicrobial activities of the wings were extremely effective at inhibiting the growth of Gram-negative bacterial cells when compared to Gram-positive bacterial cells. The fore wing was effective at inhibiting the growth of Gram-negative bacteria compared to Gram-positive samples. Electron microscopy revealed that the wings were studded with an array of rough, sharp, and pointed pillars that were distributed on both the dorsal and ventral sides, which enhanced anti-biofouling and antimicrobial effects. Our findings demonstrate the potential benefits of incorporating honeybee wings nanopatterns into the design of antibacterial nanomaterials which can be translated into countless applications in healthcare and industry.

摘要

具有卓越特性和功能的天然表面已成为深入研究的焦点。迄今为止,昆虫翅膀的天然抗菌特性激发了人们对其应用的研究。蝉、蝴蝶、蜻蜓和豆娘的翅膀进化出了非凡的抗生物污损和抗菌特性。这些翅膀覆盖着周期性的地形结构,从高度有序的纳米柱六边形阵列到复杂的“圣诞树”状结构,能够通过物理方式破坏细胞膜来杀死微生物。相比之下,蜜蜂翅膀的地形结构受到的关注较少。地形结构在蜜蜂翅膀的抗生物污损和抗菌活性中所起的作用从未被研究过。在这里,通过抗菌和电子显微镜研究,我们发现原始的蜜蜂翅膀在翅膀表面没有显示出微生物。此外,翅膀表现出破坏微生物细胞并抑制其生长的抗菌特性。与革兰氏阳性细菌细胞相比,翅膀的抗菌活性在抑制革兰氏阴性细菌细胞生长方面极其有效。与革兰氏阳性样本相比,前翅在抑制革兰氏阴性细菌生长方面有效。电子显微镜显示,翅膀上布满了一系列粗糙、尖锐且带尖的柱状物,这些柱状物分布在背侧和腹侧,增强了抗生物污损和抗菌效果。我们的研究结果表明,将蜜蜂翅膀的纳米图案纳入抗菌纳米材料设计中具有潜在益处,这可以转化为在医疗保健和工业中的无数应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a68a/10113161/da7ae26e46c2/microbiol-09-02-018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验