Suppr超能文献

水凝胶中生长的仿生纳米结构对细菌包膜造成的损伤

Bacterial Envelope Damage Inflicted by Bioinspired Nanostructures Grown in a Hydrogel.

作者信息

Arias Sandra L, Devorkin Joshua, Spear Jessica C, Civantos Ana, Allain Jean Paul

机构信息

Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

ACS Appl Bio Mater. 2020 Nov 16;3(11):7974-7988. doi: 10.1021/acsabm.0c01076. Epub 2020 Oct 12.

Abstract

Surface-associated bacterial communities, known as biofilms, are responsible for a broad spectrum of infections in humans. Recent studies have indicated that surfaces containing nanoscale protrusions, like those in dragonfly wings, create a hostile niche for bacterial colonization and biofilm growth. This functionality has been mimicked on metals and semiconductors by creating nanopillars and other high aspect ratio nanostructures at the interface of these materials. However, bactericidal topographies have not been reported on clinically relevant hydrogels and highly compliant polymers, mostly because of the complexity of fabricating nanopatterns in hydrogels with precise control of the size that can also resist aqueous immersion. Here, we report the fabrication of bioinspired bactericidal nanostructures in bacterial cellulose (BC) hydrogels using low-energy ion beam irradiation. By challenging the currently accepted view, we show that the nanostructures grown in BC affect preferentially stiff membranes like those of the Gram-positive bacteria in a time-dependent manner and, to a lesser extent, the more deformable and softer membrane of . Moreover, the nanostructures in BC did not affect the viability of murine preosteoblasts. Using single-cell analysis, we demonstrate that indeed requires less force than to be penetrated by nanoprobes with dimensions comparable to those of the nanostructured BC, providing the first direct experimental evidence validating a mechanical model of membrane rupture via a tension-induced mechanism within the activation energy theory. Our findings bridge the gap between mechano-bactericidal surfaces and low-dimensional materials, including single-walled carbon nanotubes and graphene nanosheets, in which a higher bactericidal activity toward Gram-positive bacteria has been extensively reported. Our results also demonstrate the ability to confer bactericidal properties to a hydrogel by only altering its topography at the nanoscale and contribute to a better understanding of the bacterial mechanobiology, which is fundamental for the rational design bactericidal topographies.

摘要

与表面相关的细菌群落,即生物膜,是人类多种感染的罪魁祸首。最近的研究表明,含有纳米级突起的表面,如蜻蜓翅膀上的那些,会为细菌定殖和生物膜生长创造一个不利的生态位。通过在这些材料的界面处制造纳米柱和其他高纵横比的纳米结构,这种功能已在金属和半导体上得到模仿。然而,尚未有关于临床相关水凝胶和高柔顺性聚合物的杀菌拓扑结构的报道,主要是因为在水凝胶中精确控制尺寸并能抵抗水浸来制造纳米图案很复杂。在此,我们报告了使用低能离子束辐照在细菌纤维素(BC)水凝胶中制造受生物启发的杀菌纳米结构。通过挑战当前被接受的观点,我们表明在BC中生长的纳米结构以时间依赖性方式优先影响革兰氏阳性菌那样的刚性膜,在较小程度上也影响更易变形和更柔软的膜。此外,BC中的纳米结构不影响小鼠前成骨细胞的活力。通过单细胞分析,我们证明尺寸与纳米结构BC相当的纳米探针穿透确实比穿透所需的力更小,这提供了第一个直接实验证据,验证了在活化能理论范围内通过张力诱导机制导致膜破裂的力学模型。我们的发现弥合了机械杀菌表面与低维材料(包括单壁碳纳米管和石墨烯纳米片)之间的差距,在这些低维材料中,对革兰氏阳性菌具有更高杀菌活性的情况已被广泛报道。我们的结果还证明了仅通过在纳米尺度上改变水凝胶的拓扑结构就能赋予其杀菌性能的能力,并有助于更好地理解细菌力学生物学,这对于合理设计杀菌拓扑结构至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验