Suppr超能文献

. 中磁铁矿纳米颗粒抗性的实验进化

Experimental Evolution of Magnetite Nanoparticle Resistance in .

作者信息

Ewunkem Akamu J, Rodgers LaShunta, Campbell Daisha, Staley Constance, Subedi Kiran, Boyd Sada, Graves Joseph L

机构信息

Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.

Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.

出版信息

Nanomaterials (Basel). 2021 Mar 19;11(3):790. doi: 10.3390/nano11030790.

Abstract

Both ionic and nanoparticle iron have been proposed as materials to control multidrug-resistant (MDR) bacteria. However, the potential bacteria to evolve resistance to nanoparticle bacteria remains unexplored. To this end, experimental evolution was utilized to produce five magnetite nanoparticle-resistant (FeNP) populations of . The control populations were not exposed to magnetite nanoparticles. The 24-h growth of these replicates was evaluated in the presence of increasing concentrations magnetite NPs as well as other ionic metals (gallium III, iron II, iron III, and silver I) and antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). Scanning electron microscopy was utilized to determine cell size and shape in response to magnetite nanoparticle selection. Whole genome sequencing was carried out to determine if any genomic changes resulted from magnetite nanoparticle resistance. After 25 days of selection, magnetite resistance was evident in the FeNP treatment. The FeNP populations also showed a highly significantly ( < 0.0001) greater 24-h growth as measured by optical density in metals (Fe (II), Fe (III), Ga (III), Ag, and Cu II) as well as antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). The FeNP-resistant populations also showed a significantly greater cell length compared to controls ( < 0.001). Genomic analysis of FeNP identified both polymorphisms and hard selective sweeps in the RNA polymerase genes , , and . Collectively, our results show that can rapidly evolve resistance to magnetite nanoparticles and that this result is correlated resistances to other metals and antibiotics. There were also changes in cell morphology resulting from adaptation to magnetite NPs. Thus, the various applications of magnetite nanoparticles could result in unanticipated changes in resistance to both metal and antibiotics.

摘要

离子铁和纳米颗粒铁都被提议作为控制多重耐药(MDR)细菌的材料。然而,细菌对纳米颗粒铁产生耐药性的可能性仍未得到探索。为此,利用实验进化产生了五个抗磁铁矿纳米颗粒(FeNP)的种群。对照种群未接触磁铁矿纳米颗粒。在存在浓度不断增加的磁铁矿纳米颗粒以及其他离子金属(镓III、铁II、铁III和银I)和抗生素(氨苄青霉素、氯霉素、利福平、磺胺和四环素)的情况下,评估这些重复样本的24小时生长情况。利用扫描电子显微镜确定细胞大小和形状对磁铁矿纳米颗粒选择的响应。进行全基因组测序以确定抗磁铁矿纳米颗粒是否导致任何基因组变化。经过25天的选择,FeNP处理中磁铁矿抗性明显。通过光密度测量,FeNP种群在金属(Fe(II)、Fe(III)、Ga(III)、Ag和Cu II)以及抗生素(氨苄青霉素、氯霉素、利福平、磺胺和四环素)中的24小时生长也显著更高(<0.0001)。与对照相比,抗FeNP种群的细胞长度也显著更长(<0.001)。对FeNP的基因组分析确定了RNA聚合酶基因、和中的多态性和硬选择清除。总体而言,我们的结果表明可以迅速进化出对磁铁矿纳米颗粒的抗性,并且这一结果与对其他金属和抗生素的抗性相关。适应磁铁矿纳米颗粒还导致细胞形态发生变化。因此,磁铁矿纳米颗粒的各种应用可能会导致对金属和抗生素的抗性发生意外变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc64/8003623/d9f966fbef87/nanomaterials-11-00790-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验