文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定非小细胞肺癌的细胞周期特征及其与肿瘤免疫微环境、细胞死亡途径和代谢重编程的关系。

Identification of the cell cycle characteristics of non-small cell lung cancer and its relationship with tumor immune microenvironment, cell death pathways, and metabolic reprogramming.

机构信息

Department of Clinical Laboratory Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.

Department of Clinical Laboratory Medicine, The Third People's Hospital of Yuhang District, Hangzhou, China.

出版信息

Front Endocrinol (Lausanne). 2023 Apr 6;14:1147366. doi: 10.3389/fendo.2023.1147366. eCollection 2023.


DOI:10.3389/fendo.2023.1147366
PMID:37091844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10117961/
Abstract

BACKGROUND: The genes related to the cell cycle progression could be considered the key factors in human cancers. However, the genes involved in cell cycle regulation in non-small cell lung cancer (NSCLC) have not yet been reported. Therefore, it is necessary to evaluate the genes related to the cell cycle in all types of cancers, especially NSCLC. METHODS: This study constituted the first pan-cancer landscape of cell cycle signaling. Cluster analysis based on cell cycle signaling was conducted to identify the potential molecular heterogeneity of NSCLC. Further, the discrepancies in the tumor immune microenvironment, metabolic remodeling, and cell death among the three clusters were investigated. Immunohistochemistry was performed to validate the protein levels of the ZWINT gene and examine its relationship with the clinical characteristics. Bioinformatics analyses and experimental validation of the ZWINT gene were also conducted. RESULTS: First, pan-cancer analysis provided an overview of cell cycle signaling and highlighted its crucial role in cancer. A majority of cell cycle regulators play risk roles in lung adenocarcinoma (LUAD); however, some cell cycle genes play protective roles in lung squamous cell carcinoma (LUSC). Cluster analysis revealed three potential subtypes for patients with NSCLC. LUAD patients with high cell cycle activities were associated with worse prognosis; while, LUSC patients with high cell cycle activities were associated with a longer survival time. Moreover, the above three subtypes of NSCLC exhibited distinct immune microenvironments, metabolic remodeling, and cell death pathways. ZWINT, a member of the cell signaling pathway, was observed to be significantly associated with the prognosis of LUAD patients. A series of experiments verified the higher expression levels of ZWINT in NSCLC compared to those in paracancerous tissues. The activation of epithelial-mesenchymal transition (EMT) induced by ZWINT might be responsible for tumor progression. CONCLUSION: This study revealed the regulatory function of the cell cycle genes in NSCLC, and the molecular classification based on cell cycle-associated genes could evaluate the different prognoses of patients with NSCLC. ZWINT expression was found to be significantly upregulated in NSCLC tissues, which might promote tumor progression activation of the EMT pathway.

摘要

背景:与细胞周期进展相关的基因可以被认为是人类癌症的关键因素。然而,非小细胞肺癌(NSCLC)中涉及细胞周期调控的基因尚未报道。因此,有必要评估所有类型癌症中与细胞周期相关的基因,尤其是 NSCLC。

方法:本研究构成了细胞周期信号的泛癌症景观的首次研究。基于细胞周期信号的聚类分析用于鉴定 NSCLC 的潜在分子异质性。此外,还研究了三个聚类之间肿瘤免疫微环境、代谢重塑和细胞死亡的差异。进行免疫组织化学染色以验证 ZWINT 基因的蛋白水平,并检查其与临床特征的关系。还对 ZWINT 基因进行了生物信息学分析和实验验证。

结果:首先,泛癌症分析提供了细胞周期信号的概述,并强调了其在癌症中的关键作用。大多数细胞周期调节剂在肺腺癌(LUAD)中发挥风险作用;然而,一些细胞周期基因在肺鳞状细胞癌(LUSC)中发挥保护作用。聚类分析显示 NSCLC 患者有三个潜在亚型。具有高细胞周期活性的 LUAD 患者预后较差;而具有高细胞周期活性的 LUSC 患者生存时间较长。此外,这三种 NSCLC 亚型表现出不同的免疫微环境、代谢重塑和细胞死亡途径。ZWINT,细胞信号通路的一个成员,与 LUAD 患者的预后显著相关。一系列实验验证了 ZWINT 在 NSCLC 中的表达水平明显高于癌旁组织。ZWINT 诱导的上皮-间充质转化(EMT)的激活可能是肿瘤进展的原因。

结论:本研究揭示了细胞周期基因在 NSCLC 中的调节功能,基于与细胞周期相关基因的分子分类可以评估 NSCLC 患者不同的预后。发现 ZWINT 在 NSCLC 组织中的表达明显上调,可能通过激活 EMT 通路促进肿瘤进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/d391a52d6242/fendo-14-1147366-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/5c78ee8cc9b4/fendo-14-1147366-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/32be82ff3ef9/fendo-14-1147366-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/7558a1c97af5/fendo-14-1147366-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/9ec914808eee/fendo-14-1147366-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/090552af47aa/fendo-14-1147366-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/1a7173dd45ac/fendo-14-1147366-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/181beb1ec109/fendo-14-1147366-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/222463f79da9/fendo-14-1147366-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/73b0c7b49bb2/fendo-14-1147366-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/d391a52d6242/fendo-14-1147366-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/5c78ee8cc9b4/fendo-14-1147366-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/32be82ff3ef9/fendo-14-1147366-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/7558a1c97af5/fendo-14-1147366-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/9ec914808eee/fendo-14-1147366-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/090552af47aa/fendo-14-1147366-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/1a7173dd45ac/fendo-14-1147366-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/181beb1ec109/fendo-14-1147366-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/222463f79da9/fendo-14-1147366-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/73b0c7b49bb2/fendo-14-1147366-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411a/10117961/d391a52d6242/fendo-14-1147366-g010.jpg

相似文献

[1]
Identification of the cell cycle characteristics of non-small cell lung cancer and its relationship with tumor immune microenvironment, cell death pathways, and metabolic reprogramming.

Front Endocrinol (Lausanne). 2023

[2]
Insights into the heterogeneity of the tumor microenvironment in lung adenocarcinoma and squamous carcinoma through single-cell transcriptomic analysis: Implications for distinct immunotherapy outcomes.

J Gene Med. 2024-6

[3]
ZNF143 Expression is Associated with COPD and Tumor Microenvironment in Non-Small Cell Lung Cancer.

Int J Chron Obstruct Pulmon Dis. 2022

[4]
The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing.

Signal Transduct Target Ther. 2022-8-26

[5]
Downregulation of HOXA3 in lung adenocarcinoma and its relevant molecular mechanism analysed by RT-qPCR, TCGA and in silico analysis.

Int J Oncol. 2018-7-30

[6]
ERCC6L is a biomarker and therapeutic target for non-small cell lung adenocarcinoma.

Med Oncol. 2022-2-12

[7]
Cancer Stemness-Based Prognostic Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.

Front Endocrinol (Lausanne). 2021

[8]
Comprehensive Analysis of CDK1-Associated ceRNA Network Revealing the Key Pathways LINC00460/LINC00525-Hsa-Mir-338-FAM111/ZWINT as Prognostic Biomarkers in Lung Adenocarcinoma Combined with Experiments.

Cells. 2022-4-4

[9]
Bioinformatics analysis of differentially expressed miRNAs in non-small cell lung cancer.

J Clin Lab Anal. 2021-2

[10]
Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.

Front Immunol. 2021-11-23

引用本文的文献

[1]
Molecular signatures bidirectionally link myocardial infarction and lung cancer.

Front Med (Lausanne). 2025-4-9

[2]
[Relationship between GTSE1 and Cell Cycle and Potential Regulatory Mechanisms 
in Lung Cancer Cells].

Zhongguo Fei Ai Za Zhi. 2024-6-20

[3]
The crosstalk role of CDKN2A between tumor progression and cuproptosis resistance in colorectal cancer.

Aging (Albany NY). 2024-6-17

[4]
Unveiling Potential Targeted Therapeutic Opportunities for Co-Overexpressed Targeting Protein for Xklp2 and Aurora-A Kinase in Lung Adenocarcinoma.

Mol Biotechnol. 2024-10

本文引用的文献

[1]
Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis.

Biol Res. 2023-1-3

[2]
Identification and validation of a prognostic risk-scoring model based on sphingolipid metabolism-associated cluster in colon adenocarcinoma.

Front Endocrinol (Lausanne). 2022

[3]
Comprehensive characterization of extracellular matrix-related genes in PAAD identified a novel prognostic panel related to clinical outcomes and immune microenvironment: A silico analysis with and vitro validation.

Front Immunol. 2022

[4]
Machine learning identification of cuproptosis and necroptosis-associated molecular subtypes to aid in prognosis assessment and immunotherapy response prediction in low-grade glioma.

Front Genet. 2022-9-12

[5]
Analysis of genomes and transcriptomes of clear cell renal cell carcinomas identifies mutations and gene expression changes in the TGF-beta pathway.

Front Genet. 2022-9-15

[6]
Integration of transcriptomics, proteomics, and metabolomics data to reveal HER2-associated metabolic heterogeneity in gastric cancer with response to immunotherapy and neoadjuvant chemotherapy.

Front Immunol. 2022

[7]
Potential Application of Pyroptosis in Kidney Renal Clear Cell Carcinoma Immunotherapy and Targeted Therapy.

Front Pharmacol. 2022-6-15

[8]
Transcriptome analysis of adipocytokines and their-related LncRNAs in lung adenocarcinoma revealing the association with prognosis, immune infiltration, and metabolic characteristics.

Adipocyte. 2022-12

[9]
GPC2 Is a Potential Diagnostic, Immunological, and Prognostic Biomarker in Pan-Cancer.

Front Immunol. 2022

[10]
Systematic analysis of the role of SLC52A2 in multiple human cancers.

Cancer Cell Int. 2022-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索