IEEE Trans Biomed Eng. 2023 Aug;70(8):2416-2429. doi: 10.1109/TBME.2023.3246599. Epub 2023 Jul 18.
OBJECTIVE: Recent studies have used sparse classifications to predict categorical variables from high-dimensional brain activity signals to expose human's mental states and intentions, selecting the relevant features automatically in the model training process. However, existing sparse classification models will likely be prone to the performance degradation which is caused by the noise inherent in the brain recordings. To address this issue, we aim to propose a new robust and sparse classification algorithm in this study. METHODS: To this end, we introduce the correntropy learning framework into the automatic relevance determination based sparse classification model, proposing a new correntropy-based robust sparse logistic regression algorithm. To demonstrate the superior brain activity decoding performance of the proposed algorithm, we evaluate it on a synthetic dataset, an electroencephalogram (EEG) dataset, and a functional magnetic resonance imaging (fMRI) dataset. RESULTS: The extensive experimental results confirm that not only the proposed method can achieve higher classification accuracy in a noisy and high-dimensional classification task, but also it would select those more informative features for the decoding tasks. CONCLUSION: Integrating the correntropy learning approach with the automatic relevance determination technique will significantly improve the robustness with respect to the noise, leading to more adequate robust sparse brain decoding algorithm. SIGNIFICANCE: It provides a more powerful approach in the real-world brain activity decoding and the brain-computer interfaces.
目的:最近的研究使用稀疏分类来预测高维脑活动信号中的类别变量,以揭示人类的心理状态和意图,在模型训练过程中自动选择相关特征。然而,现有的稀疏分类模型可能容易受到脑记录中固有噪声的影响而导致性能下降。为了解决这个问题,我们旨在提出一种新的稳健稀疏分类算法。
方法:为此,我们将相关熵学习框架引入到基于自动相关确定的稀疏分类模型中,提出了一种新的基于相关熵的稳健稀疏逻辑回归算法。为了证明该算法在脑活动解码方面的优越性,我们在合成数据集、脑电图(EEG)数据集和功能磁共振成像(fMRI)数据集上对其进行了评估。
结果:广泛的实验结果证实,该方法不仅可以在噪声和高维分类任务中实现更高的分类精度,而且还可以选择更具信息量的特征用于解码任务。
结论:将相关熵学习方法与自动相关性确定技术相结合,将显著提高对噪声的鲁棒性,从而得到更充分的稳健稀疏脑解码算法。
意义:它为实际的脑活动解码和脑机接口提供了一种更强大的方法。
IEEE Trans Pattern Anal Mach Intell. 2023-12
Front Neurosci. 2023-6-30
IEEE Trans Biomed Eng. 2017-9-25
J Neurosci Methods. 2019-10-1
J Neural Eng. 2023-1-23
Comput Methods Programs Biomed. 2017-5-24
Bioengineering (Basel). 2023-5-31