Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, 510640, China; Guangzhou Key Laboratory of Brain Computer Interaction and Application, Guangzhou, 510640, China.
Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, 510640, China; Guangzhou Key Laboratory of Brain Computer Interaction and Application, Guangzhou, 510640, China.
Neuroimage. 2019 Jan 1;184:417-430. doi: 10.1016/j.neuroimage.2018.09.031. Epub 2018 Sep 18.
Multivoxel pattern analysis (MVPA) methods have been widely applied in recent years to classify human brain states in functional magnetic resonance imaging (fMRI) data analysis. Voxel selection plays an important role in MVPA studies not only because it can improve decoding accuracy but also because it is useful for understanding brain functions. There are many voxel selection methods that have been proposed in fMRI literature. However, most of these methods either overlook the structure information of fMRI data or require additional cross-validation procedures to determine the hyperparameters of the models. In the present work, we proposed a voxel selection method for binary brain decoding called group sparse Bayesian logistic regression (GSBLR). This method utilizes the group sparse property of fMRI data by using a grouped automatic relevance determination (GARD) as a prior for model parameters. All the parameters in the GSBLR can be estimated automatically, thereby avoiding additional cross-validation. Experimental results based on two publicly available fMRI datasets and simulated datasets demonstrate that GSBLR achieved better classification accuracies and yielded more stable solutions than several state-of-the-art methods.
多体素模式分析(MVPA)方法近年来已广泛应用于功能磁共振成像(fMRI)数据分析中的人类大脑状态分类。体素选择在 MVPA 研究中起着重要作用,不仅因为它可以提高解码精度,而且因为它有助于理解大脑功能。在 fMRI 文献中已经提出了许多体素选择方法。然而,这些方法中的大多数要么忽略了 fMRI 数据的结构信息,要么需要额外的交叉验证程序来确定模型的超参数。在本工作中,我们提出了一种用于二进制脑解码的体素选择方法,称为分组稀疏贝叶斯逻辑回归(GSBLR)。该方法通过使用分组自动相关性确定(GARD)作为模型参数的先验来利用 fMRI 数据的分组稀疏性。GSBLR 中的所有参数都可以自动估计,从而避免了额外的交叉验证。基于两个公开可用的 fMRI 数据集和模拟数据集的实验结果表明,GSBLR 实现了更好的分类精度,并产生了比几种最先进的方法更稳定的解决方案。