Suppr超能文献

Euler 弹性正则化逻辑回归用于 fMRI 数据的全脑解码。

Euler Elastica Regularized Logistic Regression for Whole-Brain Decoding of fMRI Data.

出版信息

IEEE Trans Biomed Eng. 2018 Jul;65(7):1639-1653. doi: 10.1109/TBME.2017.2756665. Epub 2017 Sep 25.

Abstract

OBJECTIVE

Multivariate pattern analysis methods have been widely applied to functional magnetic resonance imaging (fMRI) data to decode brain states. Due to the "high features, low samples" in fMRI data, machine learning methods have been widely regularized using various regularizations to avoid overfitting. Both total variation (TV) using the gradients of images and Euler's elastica (EE) using the gradient and the curvature of images are the two popular regulations with spatial structures. In contrast to TV, EE regulation is able to overcome the disadvantage of TV regulation that favored piecewise constant images over piecewise smooth images. In this study, we introduced EE to fMRI-based decoding for the first time and proposed the EE regularized multinomial logistic regression (EELR) algorithm for multi-class classification.

METHODS

We performed experimental tests on both simulated and real fMRI data to investigate the feasibility and robustness of EELR. The performance of EELR was compared with sparse logistic regression (SLR) and TV regularized LR (TVLR).

RESULTS

The results showed that EELR was more robustness to noises and showed significantly higher classification performance than TVLR and SLR. Moreover, the forward models and weights patterns revealed that EELR detected larger brain regions that were discriminative to each task and activated by each task than TVLR.

CONCLUSION

The results suggest that EELR not only performs well in brain decoding but also reveals meaningful discriminative and activation patterns.

SIGNIFICANCE

This study demonstrated that EELR showed promising potential in brain decoding and discriminative/activation pattern detection.

摘要

目的

多元模式分析方法已广泛应用于功能磁共振成像(fMRI)数据,以解码大脑状态。由于 fMRI 数据具有“高特征、低样本”的特点,机器学习方法已广泛使用各种正则化方法进行正则化,以避免过拟合。基于图像梯度的全变分(TV)和基于图像梯度和曲率的欧拉弹性体(EE)都是具有空间结构的两种流行正则化方法。与 TV 不同,EE 正则化能够克服 TV 正则化偏向分段常数图像而不是分段平滑图像的缺点。在这项研究中,我们首次将 EE 引入基于 fMRI 的解码,并提出了用于多类分类的 EE 正则化多项逻辑回归(EELR)算法。

方法

我们在模拟和真实 fMRI 数据上进行了实验测试,以研究 EELR 的可行性和鲁棒性。将 EELR 的性能与稀疏逻辑回归(SLR)和 TV 正则化 LR(TVLR)进行了比较。

结果

结果表明,EELR 对噪声更具有鲁棒性,并且比 TVLR 和 SLR 具有更高的分类性能。此外,正向模型和权重模式表明,EELR 检测到的大脑区域比 TVLR 更大,这些区域对每个任务具有区分性,并由每个任务激活。

结论

结果表明,EELR 不仅在大脑解码方面表现出色,而且还揭示了有意义的区分性和激活模式。

意义

本研究表明,EELR 在大脑解码和区分/激活模式检测方面具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验