Suppr超能文献

连续计算机断层扫描中肾结石的自动评估

Automated Assessment of Renal Calculi in Serial Computed Tomography Scans.

作者信息

Mukherjee Pritam, Lee Sungwon, Pickhardt Perry J, Summers Ronald M

机构信息

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, USA.

Department of Radiology, The University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.

出版信息

Appl Med Artif Intell (2022). 2022 Sep;13540:39-48. doi: 10.1007/978-3-031-17721-7_5. Epub 2022 Sep 30.

Abstract

An automated pipeline is developed for the serial assessment of renal calculi using computed tomography (CT) scans obtained at multiple time points. This retrospective study included 722 scans from 330 patients chosen from 8544 asymptomatic patients who underwent two or more CTC (CT colonography) or non-enhanced abdominal CT scans between 2004 and 2016 at a single medical center. A pre-trained deep learning (DL) model was used to segment the kidneys and the calculi on the CT scans at each time point. Based on the output of the DL, 330 patients were identified as having a stone candidate on at least one time point. Then, for every patient in this group, the kidneys from different time points were registered to each other, and the calculi present at multiple time points were matched to each other using proximity on the registered scans. The automated pipeline was validated by having a blinded radiologist assess the changes manually. New graph-based metrics are introduced in order to evaluate the performance of our pipeline. Our method shows high fidelity in tracking changes in renal calculi over multiple time points.

摘要

开发了一种自动化流程,用于使用在多个时间点获得的计算机断层扫描(CT)对肾结石进行系列评估。这项回顾性研究纳入了2004年至2016年期间在单个医疗中心接受两次或更多次CT结肠成像(CTC)或非增强腹部CT扫描的8544名无症状患者中选取的330例患者的722次扫描。使用预训练的深度学习(DL)模型在每个时间点对CT扫描上的肾脏和结石进行分割。根据DL的输出,确定330例患者在至少一个时间点有结石候选。然后,对于该组中的每例患者,将不同时间点的肾脏相互配准,并使用配准扫描上的邻近度将多个时间点存在的结石相互匹配。通过让一位不知情的放射科医生手动评估变化来验证该自动化流程。引入了基于新图形的指标以评估我们流程的性能。我们的方法在跟踪多个时间点肾结石的变化方面显示出高保真度。

相似文献

1
Automated Assessment of Renal Calculi in Serial Computed Tomography Scans.
Appl Med Artif Intell (2022). 2022 Sep;13540:39-48. doi: 10.1007/978-3-031-17721-7_5. Epub 2022 Sep 30.
2
Fully Automated Longitudinal Assessment of Renal Stone Burden on Serial CT Imaging Using Deep Learning.
J Endourol. 2023 Aug;37(8):948-955. doi: 10.1089/end.2023.0066. Epub 2023 Jun 30.
3
A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans.
Med Phys. 2022 Apr;49(4):2545-2554. doi: 10.1002/mp.15518. Epub 2022 Feb 22.
4
Atherosclerotic Plaque Burden on Abdominal CT: Automated Assessment With Deep Learning on Noncontrast and Contrast-enhanced Scans.
Acad Radiol. 2021 Nov;28(11):1491-1499. doi: 10.1016/j.acra.2020.08.022. Epub 2020 Sep 18.
5
A deep learning model for automated kidney calculi detection on non-contrast computed tomography scans in dogs.
Front Vet Sci. 2023 Sep 20;10:1236579. doi: 10.3389/fvets.2023.1236579. eCollection 2023.
7
Effective deep learning classification for kidney stone using axial computed tomography (CT) images.
Biomed Tech (Berl). 2023 May 3;68(5):481-491. doi: 10.1515/bmt-2022-0142. Print 2023 Oct 26.
8
Sensitivity of Noncontrast Computed Tomography for Small Renal Calculi With Endoscopy as the Gold Standard.
Urology. 2018 Jul;117:36-40. doi: 10.1016/j.urology.2018.03.041. Epub 2018 Apr 3.

引用本文的文献

1
Evaluation of GPT Large Language Model Performance on RSNA 2023 Case of the Day Questions.
Radiology. 2024 Oct;313(1):e240609. doi: 10.1148/radiol.240609.

本文引用的文献

1
The Need for Medical Artificial Intelligence That Incorporates Prior Images.
Radiology. 2022 Aug;304(2):283-288. doi: 10.1148/radiol.212830. Epub 2022 Apr 19.
2
A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans.
Med Phys. 2022 Apr;49(4):2545-2554. doi: 10.1002/mp.15518. Epub 2022 Feb 22.
3
DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning.
J Med Imaging (Bellingham). 2018 Jul;5(3):036501. doi: 10.1117/1.JMI.5.3.036501. Epub 2018 Jul 20.
4
Natural history of asymptomatic renal stones and prediction of stone related events.
J Urol. 2013 May;189(5):1740-6. doi: 10.1016/j.juro.2012.11.113. Epub 2012 Nov 28.
5
Outcomes of long-term follow-up of patients with conservative management of asymptomatic renal calculi.
BJU Int. 2012 Feb;109(4):622-5. doi: 10.1111/j.1464-410X.2011.10329.x. Epub 2011 Aug 18.
6
Making renal stones change size-impact of CT image post processing and reader variability.
Eur Radiol. 2011 Oct;21(10):2218-25. doi: 10.1007/s00330-011-2171-x. Epub 2011 Jun 23.
7
8
Epidemiology of stone disease.
Urol Clin North Am. 2007 Aug;34(3):287-93. doi: 10.1016/j.ucl.2007.04.003.
9
Size matters: a survey of how urinary-tract stones are measured in the UK.
J Endourol. 2005 Sep;19(7):856-60. doi: 10.1089/end.2005.19.856.
10
Urologic diseases in America project: urolithiasis.
J Urol. 2005 Mar;173(3):848-57. doi: 10.1097/01.ju.0000152082.14384.d7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验