Suppr超能文献

人工智能解决方案在骨龄评估中的高性能表现。

High performance for bone age estimation with an artificial intelligence solution.

机构信息

Department of Pediatric Radiology, Hôpital Armand Trousseau AP-HP, 75012 Paris, France; Gleamer, 75010 Paris, France.

Department of Pediatric Radiology, Hôpital Armand Trousseau AP-HP, 75012 Paris, France.

出版信息

Diagn Interv Imaging. 2023 Jul-Aug;104(7-8):330-336. doi: 10.1016/j.diii.2023.04.003. Epub 2023 Apr 22.

Abstract

PURPOSE

The purpose of this study was to compare the performance of an artificial intelligence (AI) solution to that of a senior general radiologist for bone age assessment.

MATERIAL AND METHODS

Anteroposterior hand radiographs of eight boys and eight girls from each age interval between five and 17 year-old from four different radiology departments were retrospectively collected. Two board-certified pediatric radiologists with knowledge of the sex and chronological age of the patients independently estimated the Greulich and Pyle bone age to determine the standard of reference. A senior general radiologist not specialized in pediatric radiology (further referred to as "the reader") then determined the bone age with knowledge of the sex and chronological age. The results of the reader were then compared to those of the AI solution using mean absolute error (MAE) in age estimation.

RESULTS

The study dataset included a total of 206 patients (102 boys of mean chronological age of 10.9 ± 3.7 [SD] years, 104 girls of mean chronological age of 11 ± 3.7 [SD] years). For both sexes, the AI algorithm showed a significantly lower MAE than the reader (P < 0.007). In boys, the MAE was 0.488 years (95% confidence interval [CI]: 0.28-0.44; r = 0.978) for the AI algorithm and 0.771 years (95% CI: 0.64-0.90; r = 0.94) for the reader. In girls, the MAE was 0.494 years (95% CI: 0.41-0.56; r = 0.973) for the AI algorithm and 0.673 years (95% CI: 0.54-0.81; r = 0.934) for the reader.

CONCLUSION

The AI solution better estimates the Greulich and Pyle bone age than a general radiologist does.

摘要

目的

本研究旨在比较人工智能(AI)解决方案与资深放射科医生在骨龄评估方面的表现。

材料与方法

回顾性收集了来自四个不同放射科的 8 名男孩和 8 名女孩,每个年龄组在 5 至 17 岁之间。两名具有患者性别和实际年龄知识的经过认证的儿科放射科医生独立估计了 Greulich 和 Pyle 骨龄,以确定参考标准。一位不专门从事儿科放射学的资深普通放射科医生(以下简称“读者”)在了解患者性别和实际年龄的情况下确定了骨龄。然后使用年龄估计的平均绝对误差(MAE)比较读者的结果与 AI 解决方案的结果。

结果

研究数据集共包括 206 名患者(102 名男孩的平均实际年龄为 10.9 ± 3.7 [SD] 岁,104 名女孩的平均实际年龄为 11 ± 3.7 [SD] 岁)。对于男性和女性,AI 算法的 MAE 均显著低于读者(P < 0.007)。在男孩中,AI 算法的 MAE 为 0.488 岁(95%置信区间 [CI]:0.28-0.44;r = 0.978),读者的 MAE 为 0.771 岁(95% CI:0.64-0.90;r = 0.94)。在女孩中,AI 算法的 MAE 为 0.494 岁(95% CI:0.41-0.56;r = 0.973),读者的 MAE 为 0.673 岁(95% CI:0.54-0.81;r = 0.934)。

结论

AI 解决方案在估计 Greulich 和 Pyle 骨龄方面优于普通放射科医生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验