Suppr超能文献

用于全腿站立位X线片自动测量的深度学习软件评估

Evaluation of a deep learning software for automated measurements on full-leg standing radiographs.

作者信息

Lassalle Louis, Regnard Nor-Eddine, Durteste Marion, Ventre Jeanne, Marty Vincent, Clovis Lauryane, Zhang Zekun, Nitche Nicolas, Ducarouge Alexis, Laredo Jean-Denis, Guermazi Ali

机构信息

Réseau Imagerie Sud Francilien, Lieusaint, France.

Ramsay Santé, Clinique du Mousseau, Evry, France.

出版信息

Knee Surg Relat Res. 2024 Nov 29;36(1):40. doi: 10.1186/s43019-024-00246-1.

Abstract

BACKGROUND

Precise lower limb measurements are crucial for assessing musculoskeletal health; fully automated solutions have the potential to enhance standardization and reproducibility of these measurements. This study compared the measurements performed by BoneMetrics (Gleamer, Paris, France), a commercial artificial intelligence (AI)-based software, to expert manual measurements on anteroposterior full-leg standing radiographs.

METHODS

A retrospective analysis was conducted on a dataset comprising consecutive anteroposterior full-leg standing radiographs obtained from four imaging institutions. Key anatomical landmarks to define the hip-knee-ankle angle, pelvic obliquity, leg length, femoral length, and tibial length were annotated independently by two expert musculoskeletal radiologists and served as the ground truth. The performance of the AI was compared against these reference measurements using the mean absolute error, Bland-Altman analyses, and intraclass correlation coefficients.

RESULTS

A total of 175 anteroposterior full-leg standing radiographs from 167 patients were included in the final dataset (mean age = 49.9 ± 23.6 years old; 103 women and 64 men). Mean absolute error values were 0.30° (95% confidence interval [CI] [0.28, 0.32]) for the hip-knee-ankle angle, 0.75 mm (95% CI [0.60, 0.88]) for pelvic obliquity, 1.03 mm (95% CI [0.91,1.14]) for leg length from the top of the femoral head, 1.45 mm (95% CI [1.33, 1.60]) for leg length from the center of the femoral head, 0.95 mm (95% CI [0.85, 1.04]) for femoral length from the top of the femoral head, 1.23 mm (95% CI [1.12, 1.32]) for femoral length from the center of the femoral head, and 1.38 mm (95% CI [1.21, 1.52]) for tibial length. The Bland-Altman analyses revealed no systematic bias across all measurements. Additionally, the software exhibited excellent agreement with the gold-standard measurements with intraclass correlation coefficient (ICC) values above 0.97 for all parameters.

CONCLUSIONS

Automated measurements on anteroposterior full-leg standing radiographs offer a reliable alternative to manual assessments. The use of AI in musculoskeletal radiology has the potential to support physicians in their daily practice without compromising patient care standards.

摘要

背景

精确的下肢测量对于评估肌肉骨骼健康至关重要;全自动解决方案有可能提高这些测量的标准化和可重复性。本研究将基于人工智能(AI)的商业软件BoneMetrics(法国巴黎Gleamer公司)所进行的测量结果,与专家在前后位全腿站立位X线片上的手动测量结果进行了比较。

方法

对来自四个影像机构的连续前后位全腿站立位X线片数据集进行回顾性分析。由两位专家级肌肉骨骼放射科医生独立标注用于定义髋-膝-踝角、骨盆倾斜度、腿长、股骨长度和胫骨长度的关键解剖标志点,并将其作为参考标准。使用平均绝对误差、布兰德-奥特曼分析和组内相关系数,将人工智能的性能与这些参考测量结果进行比较。

结果

最终数据集中纳入了来自167例患者的175张前后位全腿站立位X线片(平均年龄=49.9±23.6岁;女性103例,男性64例)。髋-膝-踝角的平均绝对误差值为0.30°(95%置信区间[CI][0.28, 0.32]),骨盆倾斜度为0.75 mm(95% CI [0.60, 0.88]),从股骨头顶部测量的腿长为1.03 mm(95% CI [0.91, 1.14]),从股骨头中心测量的腿长为1.45 mm(95% CI [1.33, 1.60]),从股骨头顶部测量的股骨长度为0.95 mm(95% CI [0.85, 1.04]),从股骨头中心测量的股骨长度为1.23 mm(95% CI [1.12, 1.32]),胫骨长度为1.38 mm(95% CI [1.21, 1.52])。布兰德-奥特曼分析显示,所有测量均无系统偏差。此外,该软件与金标准测量结果表现出极佳的一致性,所有参数的组内相关系数(ICC)值均高于0.97。

结论

前后位全腿站立位X线片的自动测量为手动评估提供了可靠的替代方法。在肌肉骨骼放射学中使用人工智能有潜力在不影响患者护理标准的情况下,支持医生的日常实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba3/11606017/cc4e7d7f9cc7/43019_2024_246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验