Suppr超能文献

等权重多尺度弹性网络模型及其与传统和无参模型的比较。

Equally Weighted Multiscale Elastic Network Model and Its Comparison with Traditional and Parameter-Free Models.

机构信息

Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China.

Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing 100124, China.

出版信息

J Chem Inf Model. 2021 Feb 22;61(2):921-937. doi: 10.1021/acs.jcim.0c01178. Epub 2021 Jan 26.

Abstract

Dynamical properties of proteins play an essential role in their function exertion. The elastic network model (ENM) is an effective and efficient tool in characterizing the intrinsic dynamical properties encoded in biomacromolecule structures. The Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. Here, we introduce an equally weighted multiscale ENM (equally weighted mENM) based on the original mENM (denoted as mENM), in which fitting weights of Kirchhoff/Hessian matrixes in mENM are removed since they neglect the details of pairwise interactions. Then, we perform its comparison with the mENM, traditional ENM, and parameter-free ENM (pfENM) in reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM performs best, while the equally weighted mENM performs also well, better than the traditional ENM and pfENM models. As to the dynamical cross-correlation map calculation, mENM performs worst, while the results produced from the equally weighted mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Furthermore, encouragingly, the equally weighted mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while the mANM fails in all the cases. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.

摘要

蛋白质的动力学性质在其功能发挥中起着至关重要的作用。弹性网络模型(ENM)是一种有效和高效的工具,可用于描述生物大分子结构中编码的固有动力学性质。高斯网络模型(GNM)和各向异性网络模型(ANM)是两种常用的 ENM 模型。在这里,我们引入了一种基于原始 mENM 的等权重多尺度 ENM(简称等权重 mENM),其中去除了 mENM 中 Kirchhoff/Hessian 矩阵的拟合权重,因为它们忽略了成对相互作用的细节。然后,我们将其与 mENM、传统 ENM 和无参数 ENM(pfENM)在六个具有分子动力学(MD)轨迹的代表性蛋白质的动力学性质再现方面进行比较,这些轨迹可在 http://mmb.pcb.ub.es/MoDEL/ 上获得。在结果中,对于 B 因子预测,mENM 表现最好,而等权重 mENM 表现也很好,优于传统 ENM 和 pfENM 模型。至于动力学互相关图的计算,mENM 表现最差,而等权重 mENM 和 pfENM 模型产生的结果与 MD 轨迹非常接近,后者比前者略好。此外,令人鼓舞的是,等权重 mANM 在捕捉功能运动模式方面表现最佳,其次是 pfANM 和传统 ANM 模型,而 mANM 在所有情况下都失败了。这项工作有助于加强对弹性网络模型的理解,并为研究人员利用该模型探索蛋白质动力学提供了有价值的指导。

相似文献

1
Equally Weighted Multiscale Elastic Network Model and Its Comparison with Traditional and Parameter-Free Models.
J Chem Inf Model. 2021 Feb 22;61(2):921-937. doi: 10.1021/acs.jcim.0c01178. Epub 2021 Jan 26.
2
Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM).
J Chem Phys. 2015 Nov 28;143(20):204106. doi: 10.1063/1.4936132.
3
Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
Adv Exp Med Biol. 2014;805:107-35. doi: 10.1007/978-3-319-02970-2_5.
7
Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
BMC Struct Biol. 2010 May 17;10 Suppl 1(Suppl 1):S3. doi: 10.1186/1472-6807-10-S1-S3.
9
Identification of Allosteric Effects in Proteins by Elastic Network Models.
Methods Mol Biol. 2021;2253:21-35. doi: 10.1007/978-1-0716-1154-8_3.
10
Identifying essential pairwise interactions in elastic network model using the alpha shape theory.
J Comput Chem. 2014 Jun 5;35(15):1111-21. doi: 10.1002/jcc.23587. Epub 2014 Mar 19.

引用本文的文献

1
Apolipoprotein A-IV and its derived peptide, T55-121, improve glycemic control and increase energy expenditure.
Life Metab. 2024 Mar 14;3(4):loae010. doi: 10.1093/lifemeta/loae010. eCollection 2024 Aug.
2
Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
BMC Bioinformatics. 2024 May 9;25(1):182. doi: 10.1186/s12859-024-05669-x.
3
Statistical learning of protein elastic network from positional covariance matrix.
Comput Struct Biotechnol J. 2023 Mar 28;21:2524-2535. doi: 10.1016/j.csbj.2023.03.033. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验