Suppr超能文献

小分子的动态自组装能够在钙钛矿/电极界面处自发形成空穴导体,从而使倒置钙钛矿太阳能电池的稳定效率超过 22%。

Dynamic self-assembly of small molecules enables the spontaneous fabrication of hole conductors at perovskite/electrode interfaces for over 22% stable inverted perovskite solar cells.

机构信息

Institute of Flexible Electronics (IFE, Future Technologies), College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

出版信息

Mater Horiz. 2023 Jul 3;10(7):2609-2617. doi: 10.1039/d3mh00219e.

Abstract

The bottom hole transport layers (HTLs) are of paramount importance in determining both the efficiency and stability of inverted perovskite solar cells (PSCs), however, their surface nature and properties strongly interfere with the upper perovskite crystallization kinetics and also influence interfacial carrier dynamics. In this work, we strategically develop a simple, facile and spontaneous fabrication method of the HTL at the perovskite/electrode interface by dynamic self-assembly (DSA) of small molecules during perovskite crystallization. Different from the traditional layer-by-layer approach, this DSA strategy involves a bilateral movement of self-assembled molecules (SAMs) from perovskite solution, realizing simultaneous fabrication of the HTL and perovskite surface passivation. We design a multifunctional molecule, (4-(7-benzo[]carbazol-7-yl)butyl)phosphonic acid (BCB-C4PA), for the DSA process, to optimize both self-assembly ability and interfacial energy alignment. Benefitting from this unconventional DSA approach and BCB-C4PA, a champion PCE of 22.2% is achieved along with remarkable long-term environmental stability for over 2750 h, which is among the highest reported efficiencies for SAM-based PSCs. This investigation provides a creative, unique and effective molecular approach for preparing reliable charge transport layers, opening up new avenues for the further development of efficient interfacial contacts for PSCs.

摘要

底空传输层(HTL)对倒置钙钛矿太阳能电池(PSC)的效率和稳定性至关重要,然而,其表面性质和特性强烈干扰了上钙钛矿的结晶动力学,并影响了界面载流子动力学。在这项工作中,我们通过钙钛矿结晶过程中小分子的动态自组装(DSA),在钙钛矿/电极界面处策略性地开发了一种简单、简便且自发的 HTL 制造方法。与传统的逐层方法不同,这种 DSA 策略涉及自组装分子(SAM)从钙钛矿溶液中的双向运动,实现 HTL 和钙钛矿表面钝化的同时制造。我们设计了一种多功能分子,(4-(7-苯并[]咔唑-7-基)丁基)膦酸(BCB-C4PA),用于 DSA 过程,以优化自组装能力和界面能量对准。得益于这种非传统的 DSA 方法和 BCB-C4PA,我们实现了 22.2%的冠军 PCE,并具有超过 2750 小时的卓越长期环境稳定性,这是基于 SAM 的 PSCs 中报告的最高效率之一。这项研究为制备可靠的电荷传输层提供了一种有创意、独特和有效的分子方法,为 PSCs 进一步开发高效的界面接触开辟了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验